TPTP Problem File: LAT378+1.p
View Solutions
- Solve Problem
%------------------------------------------------------------------------------
% File : LAT378+1 : TPTP v9.1.0. Released v3.4.0.
% Domain : Lattice Theory
% Problem : Duality Based on Galois Connection - Part I T63
% Version : [Urb08] axioms : Especial.
% English :
% Refs : [Ban01] Bancerek (2001), Duality Based on the Galois Connectio
% : [Urb07] Urban (2007), MPTP 0.2: Design, Implementation, and In
% : [Urb08] Urban (2006), Email to G. Sutcliffe
% Source : [Urb08]
% Names : t63_waybel34 [Urb08]
% Status : Theorem
% Rating : 0.58 v8.2.0, 0.61 v8.1.0, 0.64 v7.5.0, 0.72 v7.4.0, 0.60 v7.3.0, 0.62 v7.2.0, 0.59 v7.1.0, 0.57 v7.0.0, 0.60 v6.4.0, 0.62 v6.2.0, 0.76 v6.1.0, 0.80 v6.0.0, 0.78 v5.5.0, 0.89 v5.2.0, 0.85 v5.1.0, 0.86 v5.0.0, 0.88 v4.1.0, 0.91 v4.0.1, 0.87 v4.0.0, 0.88 v3.7.0, 0.95 v3.4.0
% Syntax : Number of formulae : 69 ( 14 unt; 0 def)
% Number of atoms : 256 ( 4 equ)
% Maximal formula atoms : 16 ( 3 avg)
% Number of connectives : 217 ( 30 ~; 1 |; 115 &)
% ( 3 <=>; 68 =>; 0 <=; 0 <~>)
% Maximal formula depth : 15 ( 5 avg)
% Maximal term depth : 3 ( 1 avg)
% Number of predicates : 28 ( 26 usr; 1 prp; 0-4 aty)
% Number of functors : 8 ( 8 usr; 1 con; 0-5 aty)
% Number of variables : 129 ( 115 !; 14 ?)
% SPC : FOF_THM_RFO_SEQ
% Comments : Normal version: includes the axioms (which may be theorems from
% other articles) and background that are possibly necessary.
% : Translated by MPTP from the Mizar Mathematical Library 4.48.930.
% : The problem encoding is based on set theory.
%------------------------------------------------------------------------------
fof(t63_waybel34,conjecture,
! [A] :
( ( ~ v3_struct_0(A)
& l1_orders_2(A) )
=> ! [B] :
( ( ~ v3_struct_0(B)
& l1_orders_2(B) )
=> ! [C] :
( ( ~ v3_struct_0(C)
& l1_orders_2(C) )
=> ! [D] :
( ( v1_funct_1(D)
& v1_funct_2(D,u1_struct_0(A),u1_struct_0(B))
& m2_relset_1(D,u1_struct_0(A),u1_struct_0(B)) )
=> ! [E] :
( ( v1_funct_1(E)
& v1_funct_2(E,u1_struct_0(B),u1_struct_0(C))
& m2_relset_1(E,u1_struct_0(B),u1_struct_0(C)) )
=> ( ( v4_waybel34(D,A,B)
& v4_waybel34(E,B,C) )
=> v4_waybel34(k7_funct_2(u1_struct_0(A),u1_struct_0(B),u1_struct_0(C),D,E),A,C) ) ) ) ) ) ) ).
fof(antisymmetry_r2_hidden,axiom,
! [A,B] :
( r2_hidden(A,B)
=> ~ r2_hidden(B,A) ) ).
fof(cc10_membered,axiom,
! [A] :
( v1_membered(A)
=> ! [B] :
( m1_subset_1(B,A)
=> v1_xcmplx_0(B) ) ) ).
fof(cc11_membered,axiom,
! [A] :
( v2_membered(A)
=> ! [B] :
( m1_subset_1(B,A)
=> ( v1_xcmplx_0(B)
& v1_xreal_0(B) ) ) ) ).
fof(cc12_membered,axiom,
! [A] :
( v3_membered(A)
=> ! [B] :
( m1_subset_1(B,A)
=> ( v1_xcmplx_0(B)
& v1_xreal_0(B)
& v1_rat_1(B) ) ) ) ).
fof(cc13_membered,axiom,
! [A] :
( v4_membered(A)
=> ! [B] :
( m1_subset_1(B,A)
=> ( v1_xcmplx_0(B)
& v1_xreal_0(B)
& v1_int_1(B)
& v1_rat_1(B) ) ) ) ).
fof(cc14_membered,axiom,
! [A] :
( v5_membered(A)
=> ! [B] :
( m1_subset_1(B,A)
=> ( v1_xcmplx_0(B)
& v4_ordinal2(B)
& v1_xreal_0(B)
& v1_int_1(B)
& v1_rat_1(B) ) ) ) ).
fof(cc15_membered,axiom,
! [A] :
( v1_xboole_0(A)
=> ( v1_membered(A)
& v2_membered(A)
& v3_membered(A)
& v4_membered(A)
& v5_membered(A) ) ) ).
fof(cc16_membered,axiom,
! [A] :
( v1_membered(A)
=> ! [B] :
( m1_subset_1(B,k1_zfmisc_1(A))
=> v1_membered(B) ) ) ).
fof(cc17_membered,axiom,
! [A] :
( v2_membered(A)
=> ! [B] :
( m1_subset_1(B,k1_zfmisc_1(A))
=> ( v1_membered(B)
& v2_membered(B) ) ) ) ).
fof(cc18_membered,axiom,
! [A] :
( v3_membered(A)
=> ! [B] :
( m1_subset_1(B,k1_zfmisc_1(A))
=> ( v1_membered(B)
& v2_membered(B)
& v3_membered(B) ) ) ) ).
fof(cc19_membered,axiom,
! [A] :
( v4_membered(A)
=> ! [B] :
( m1_subset_1(B,k1_zfmisc_1(A))
=> ( v1_membered(B)
& v2_membered(B)
& v3_membered(B)
& v4_membered(B) ) ) ) ).
fof(cc1_finset_1,axiom,
! [A] :
( v1_xboole_0(A)
=> v1_finset_1(A) ) ).
fof(cc1_funct_1,axiom,
! [A] :
( v1_xboole_0(A)
=> v1_funct_1(A) ) ).
fof(cc1_membered,axiom,
! [A] :
( v5_membered(A)
=> v4_membered(A) ) ).
fof(cc1_relset_1,axiom,
! [A,B,C] :
( m1_subset_1(C,k1_zfmisc_1(k2_zfmisc_1(A,B)))
=> v1_relat_1(C) ) ).
fof(cc20_membered,axiom,
! [A] :
( v5_membered(A)
=> ! [B] :
( m1_subset_1(B,k1_zfmisc_1(A))
=> ( v1_membered(B)
& v2_membered(B)
& v3_membered(B)
& v4_membered(B)
& v5_membered(B) ) ) ) ).
fof(cc2_finset_1,axiom,
! [A] :
( v1_finset_1(A)
=> ! [B] :
( m1_subset_1(B,k1_zfmisc_1(A))
=> v1_finset_1(B) ) ) ).
fof(cc2_funct_1,axiom,
! [A] :
( ( v1_relat_1(A)
& v1_xboole_0(A)
& v1_funct_1(A) )
=> ( v1_relat_1(A)
& v1_funct_1(A)
& v2_funct_1(A) ) ) ).
fof(cc2_membered,axiom,
! [A] :
( v4_membered(A)
=> v3_membered(A) ) ).
fof(cc3_membered,axiom,
! [A] :
( v3_membered(A)
=> v2_membered(A) ) ).
fof(cc4_membered,axiom,
! [A] :
( v2_membered(A)
=> v1_membered(A) ) ).
fof(d15_waybel34,axiom,
! [A] :
( ( ~ v3_struct_0(A)
& l1_orders_2(A) )
=> ! [B] :
( ( ~ v3_struct_0(B)
& l1_orders_2(B) )
=> ! [C] :
( ( v1_funct_1(C)
& v1_funct_2(C,u1_struct_0(A),u1_struct_0(B))
& m2_relset_1(C,u1_struct_0(A),u1_struct_0(B)) )
=> ( v4_waybel34(C,A,B)
<=> ! [D] :
( ( v1_finset_1(D)
& m1_subset_1(D,k1_zfmisc_1(u1_struct_0(A))) )
=> r4_waybel_0(A,B,C,D) ) ) ) ) ) ).
fof(dt_k1_xboole_0,axiom,
$true ).
fof(dt_k1_zfmisc_1,axiom,
$true ).
fof(dt_k2_zfmisc_1,axiom,
$true ).
fof(dt_k4_pre_topc,axiom,
! [A,B,C,D] :
( ( l1_struct_0(A)
& l1_struct_0(B)
& v1_funct_1(C)
& v1_funct_2(C,u1_struct_0(A),u1_struct_0(B))
& m1_relset_1(C,u1_struct_0(A),u1_struct_0(B)) )
=> m1_subset_1(k4_pre_topc(A,B,C,D),k1_zfmisc_1(u1_struct_0(B))) ) ).
fof(dt_k5_relat_1,axiom,
! [A,B] :
( ( v1_relat_1(A)
& v1_relat_1(B) )
=> v1_relat_1(k5_relat_1(A,B)) ) ).
fof(dt_k7_funct_2,axiom,
! [A,B,C,D,E] :
( ( ~ v1_xboole_0(B)
& v1_funct_1(D)
& v1_funct_2(D,A,B)
& m1_relset_1(D,A,B)
& v1_funct_1(E)
& v1_funct_2(E,B,C)
& m1_relset_1(E,B,C) )
=> ( v1_funct_1(k7_funct_2(A,B,C,D,E))
& v1_funct_2(k7_funct_2(A,B,C,D,E),A,C)
& m2_relset_1(k7_funct_2(A,B,C,D,E),A,C) ) ) ).
fof(dt_k9_relat_1,axiom,
$true ).
fof(dt_l1_orders_2,axiom,
! [A] :
( l1_orders_2(A)
=> l1_struct_0(A) ) ).
fof(dt_l1_struct_0,axiom,
$true ).
fof(dt_m1_relset_1,axiom,
$true ).
fof(dt_m1_subset_1,axiom,
$true ).
fof(dt_m2_relset_1,axiom,
! [A,B,C] :
( m2_relset_1(C,A,B)
=> m1_subset_1(C,k1_zfmisc_1(k2_zfmisc_1(A,B))) ) ).
fof(dt_u1_struct_0,axiom,
$true ).
fof(existence_l1_orders_2,axiom,
? [A] : l1_orders_2(A) ).
fof(existence_l1_struct_0,axiom,
? [A] : l1_struct_0(A) ).
fof(existence_m1_relset_1,axiom,
! [A,B] :
? [C] : m1_relset_1(C,A,B) ).
fof(existence_m1_subset_1,axiom,
! [A] :
? [B] : m1_subset_1(B,A) ).
fof(existence_m2_relset_1,axiom,
! [A,B] :
? [C] : m2_relset_1(C,A,B) ).
fof(fc13_finset_1,axiom,
! [A,B] :
( ( v1_relat_1(A)
& v1_funct_1(A)
& v1_finset_1(B) )
=> v1_finset_1(k9_relat_1(A,B)) ) ).
fof(fc14_finset_1,axiom,
! [A,B] :
( ( v1_finset_1(A)
& v1_finset_1(B) )
=> v1_finset_1(k2_zfmisc_1(A,B)) ) ).
fof(fc1_funct_1,axiom,
! [A,B] :
( ( v1_relat_1(A)
& v1_funct_1(A)
& v1_relat_1(B)
& v1_funct_1(B) )
=> ( v1_relat_1(k5_relat_1(A,B))
& v1_funct_1(k5_relat_1(A,B)) ) ) ).
fof(fc1_struct_0,axiom,
! [A] :
( ( ~ v3_struct_0(A)
& l1_struct_0(A) )
=> ~ v1_xboole_0(u1_struct_0(A)) ) ).
fof(fc1_waybel_2,axiom,
! [A,B,C,D] :
( ( ~ v1_xboole_0(A)
& ~ v1_xboole_0(B)
& v1_funct_1(C)
& v1_funct_2(C,A,B)
& m1_relset_1(C,A,B)
& ~ v1_xboole_0(D)
& m1_subset_1(D,k1_zfmisc_1(A)) )
=> ~ v1_xboole_0(k9_relat_1(C,D)) ) ).
fof(fc6_membered,axiom,
( v1_xboole_0(k1_xboole_0)
& v1_membered(k1_xboole_0)
& v2_membered(k1_xboole_0)
& v3_membered(k1_xboole_0)
& v4_membered(k1_xboole_0)
& v5_membered(k1_xboole_0) ) ).
fof(rc1_finset_1,axiom,
? [A] :
( ~ v1_xboole_0(A)
& v1_finset_1(A) ) ).
fof(rc1_funct_1,axiom,
? [A] :
( v1_relat_1(A)
& v1_funct_1(A) ) ).
fof(rc1_membered,axiom,
? [A] :
( ~ v1_xboole_0(A)
& v1_membered(A)
& v2_membered(A)
& v3_membered(A)
& v4_membered(A)
& v5_membered(A) ) ).
fof(rc2_funct_1,axiom,
? [A] :
( v1_relat_1(A)
& v1_xboole_0(A)
& v1_funct_1(A) ) ).
fof(rc3_finset_1,axiom,
! [A] :
( ~ v1_xboole_0(A)
=> ? [B] :
( m1_subset_1(B,k1_zfmisc_1(A))
& ~ v1_xboole_0(B)
& v1_finset_1(B) ) ) ).
fof(rc3_funct_1,axiom,
? [A] :
( v1_relat_1(A)
& v1_funct_1(A)
& v2_funct_1(A) ) ).
fof(rc3_struct_0,axiom,
? [A] :
( l1_struct_0(A)
& ~ v3_struct_0(A) ) ).
fof(rc4_finset_1,axiom,
! [A] :
( ~ v1_xboole_0(A)
=> ? [B] :
( m1_subset_1(B,k1_zfmisc_1(A))
& ~ v1_xboole_0(B)
& v1_finset_1(B) ) ) ).
fof(rc5_struct_0,axiom,
! [A] :
( ( ~ v3_struct_0(A)
& l1_struct_0(A) )
=> ? [B] :
( m1_subset_1(B,k1_zfmisc_1(u1_struct_0(A)))
& ~ v1_xboole_0(B) ) ) ).
fof(redefinition_k4_pre_topc,axiom,
! [A,B,C,D] :
( ( l1_struct_0(A)
& l1_struct_0(B)
& v1_funct_1(C)
& v1_funct_2(C,u1_struct_0(A),u1_struct_0(B))
& m1_relset_1(C,u1_struct_0(A),u1_struct_0(B)) )
=> k4_pre_topc(A,B,C,D) = k9_relat_1(C,D) ) ).
fof(redefinition_k7_funct_2,axiom,
! [A,B,C,D,E] :
( ( ~ v1_xboole_0(B)
& v1_funct_1(D)
& v1_funct_2(D,A,B)
& m1_relset_1(D,A,B)
& v1_funct_1(E)
& v1_funct_2(E,B,C)
& m1_relset_1(E,B,C) )
=> k7_funct_2(A,B,C,D,E) = k5_relat_1(D,E) ) ).
fof(redefinition_m2_relset_1,axiom,
! [A,B,C] :
( m2_relset_1(C,A,B)
<=> m1_relset_1(C,A,B) ) ).
fof(reflexivity_r1_tarski,axiom,
! [A,B] : r1_tarski(A,A) ).
fof(t1_subset,axiom,
! [A,B] :
( r2_hidden(A,B)
=> m1_subset_1(A,B) ) ).
fof(t2_subset,axiom,
! [A,B] :
( m1_subset_1(A,B)
=> ( v1_xboole_0(B)
| r2_hidden(A,B) ) ) ).
fof(t3_subset,axiom,
! [A,B] :
( m1_subset_1(A,k1_zfmisc_1(B))
<=> r1_tarski(A,B) ) ).
fof(t4_subset,axiom,
! [A,B,C] :
( ( r2_hidden(A,B)
& m1_subset_1(B,k1_zfmisc_1(C)) )
=> m1_subset_1(A,C) ) ).
fof(t5_subset,axiom,
! [A,B,C] :
~ ( r2_hidden(A,B)
& m1_subset_1(B,k1_zfmisc_1(C))
& v1_xboole_0(C) ) ).
fof(t62_waybel34,axiom,
! [A] :
( ( ~ v3_struct_0(A)
& l1_orders_2(A) )
=> ! [B] :
( ( ~ v3_struct_0(B)
& l1_orders_2(B) )
=> ! [C] :
( ( ~ v3_struct_0(C)
& l1_orders_2(C) )
=> ! [D] :
( m1_subset_1(D,k1_zfmisc_1(u1_struct_0(A)))
=> ! [E] :
( ( v1_funct_1(E)
& v1_funct_2(E,u1_struct_0(A),u1_struct_0(B))
& m2_relset_1(E,u1_struct_0(A),u1_struct_0(B)) )
=> ! [F] :
( ( v1_funct_1(F)
& v1_funct_2(F,u1_struct_0(B),u1_struct_0(C))
& m2_relset_1(F,u1_struct_0(B),u1_struct_0(C)) )
=> ( ( r4_waybel_0(A,B,E,D)
& r4_waybel_0(B,C,F,k4_pre_topc(A,B,E,D)) )
=> r4_waybel_0(A,C,k7_funct_2(u1_struct_0(A),u1_struct_0(B),u1_struct_0(C),E,F),D) ) ) ) ) ) ) ) ).
fof(t6_boole,axiom,
! [A] :
( v1_xboole_0(A)
=> A = k1_xboole_0 ) ).
fof(t7_boole,axiom,
! [A,B] :
~ ( r2_hidden(A,B)
& v1_xboole_0(B) ) ).
fof(t8_boole,axiom,
! [A,B] :
~ ( v1_xboole_0(A)
& A != B
& v1_xboole_0(B) ) ).
%------------------------------------------------------------------------------