TPTP Problem File: LAT374+1.p
View Solutions
- Solve Problem
%------------------------------------------------------------------------------
% File : LAT374+1 : TPTP v9.0.0. Released v3.4.0.
% Domain : Lattice Theory
% Problem : Duality Based on Galois Connection - Part I T49
% Version : [Urb08] axioms : Especial.
% English :
% Refs : [Ban01] Bancerek (2001), Duality Based on the Galois Connectio
% : [Urb07] Urban (2007), MPTP 0.2: Design, Implementation, and In
% : [Urb08] Urban (2006), Email to G. Sutcliffe
% Source : [Urb08]
% Names : t49_waybel34 [Urb08]
% Status : Theorem
% Rating : 0.55 v9.0.0, 0.61 v8.2.0, 0.58 v8.1.0, 0.61 v7.5.0, 0.69 v7.4.0, 0.53 v7.3.0, 0.62 v7.2.0, 0.59 v7.1.0, 0.61 v7.0.0, 0.60 v6.4.0, 0.62 v6.3.0, 0.67 v6.2.0, 0.76 v6.1.0, 0.80 v6.0.0, 0.78 v5.5.0, 0.81 v5.4.0, 0.82 v5.3.0, 0.85 v5.2.0, 0.80 v5.1.0, 0.81 v5.0.0, 0.88 v4.1.0, 0.91 v4.0.0, 0.92 v3.7.0, 0.85 v3.5.0, 0.89 v3.4.0
% Syntax : Number of formulae : 138 ( 20 unt; 0 def)
% Number of atoms : 752 ( 17 equ)
% Maximal formula atoms : 23 ( 5 avg)
% Number of connectives : 712 ( 98 ~; 2 |; 445 &)
% ( 8 <=>; 159 =>; 0 <=; 0 <~>)
% Maximal formula depth : 20 ( 6 avg)
% Maximal term depth : 4 ( 1 avg)
% Number of predicates : 62 ( 60 usr; 1 prp; 0-4 aty)
% Number of functors : 19 ( 19 usr; 1 con; 0-4 aty)
% Number of variables : 228 ( 200 !; 28 ?)
% SPC : FOF_THM_RFO_SEQ
% Comments : Normal version: includes the axioms (which may be theorems from
% other articles) and background that are possibly necessary.
% : Translated by MPTP from the Mizar Mathematical Library 4.48.930.
% : The problem encoding is based on set theory.
%------------------------------------------------------------------------------
fof(t49_waybel34,conjecture,
! [A] :
( ~ v2_setfam_1(A)
=> ! [B] :
( ( v2_orders_2(B)
& v3_orders_2(B)
& v4_orders_2(B)
& v1_lattice3(B)
& v2_lattice3(B)
& l1_orders_2(B) )
=> ( m1_subset_1(B,u1_struct_0(k9_waybel34(A)))
<=> ( v1_orders_2(B)
& v3_lattice3(B)
& r2_hidden(u1_struct_0(B),A) ) ) ) ) ).
fof(abstractness_v1_orders_2,axiom,
! [A] :
( l1_orders_2(A)
=> ( v1_orders_2(A)
=> A = g1_orders_2(u1_struct_0(A),u1_orders_2(A)) ) ) ).
fof(abstractness_v6_altcat_1,axiom,
! [A] :
( l2_altcat_1(A)
=> ( v6_altcat_1(A)
=> A = g2_altcat_1(u1_struct_0(A),u1_altcat_1(A),u2_altcat_1(A)) ) ) ).
fof(antisymmetry_r2_hidden,axiom,
! [A,B] :
( r2_hidden(A,B)
=> ~ r2_hidden(B,A) ) ).
fof(cc10_membered,axiom,
! [A] :
( v1_membered(A)
=> ! [B] :
( m1_subset_1(B,A)
=> v1_xcmplx_0(B) ) ) ).
fof(cc10_waybel_0,axiom,
! [A] :
( l1_orders_2(A)
=> ( ( ~ v3_struct_0(A)
& v2_orders_2(A)
& v3_lattice3(A) )
=> ( ~ v3_struct_0(A)
& v2_orders_2(A)
& v24_waybel_0(A)
& v25_waybel_0(A) ) ) ) ).
fof(cc11_membered,axiom,
! [A] :
( v2_membered(A)
=> ! [B] :
( m1_subset_1(B,A)
=> ( v1_xcmplx_0(B)
& v1_xreal_0(B) ) ) ) ).
fof(cc11_waybel_0,axiom,
! [A] :
( l1_orders_2(A)
=> ( ( ~ v3_struct_0(A)
& v2_orders_2(A)
& v25_waybel_0(A) )
=> ( ~ v3_struct_0(A)
& v2_orders_2(A)
& v1_yellow_0(A) ) ) ) ).
fof(cc11_yellow21,axiom,
! [A] :
( ( ~ v3_struct_0(A)
& v2_altcat_1(A)
& v11_altcat_1(A)
& v12_altcat_1(A)
& v3_yellow21(A)
& l2_altcat_1(A) )
=> ! [B] :
( m1_altcat_2(B,A)
=> ( ( ~ v3_struct_0(B)
& v2_altcat_1(B)
& v3_altcat_2(B,A) )
=> ( ~ v3_struct_0(B)
& v2_altcat_1(B)
& v9_altcat_1(B)
& v11_altcat_1(B)
& v12_altcat_1(B)
& v1_altcat_2(B)
& v3_altcat_2(B,A)
& v2_yellow18(B)
& v3_yellow18(B)
& v4_yellow18(B)
& v1_yellow21(B)
& v2_yellow21(B)
& v3_yellow21(B) ) ) ) ) ).
fof(cc12_membered,axiom,
! [A] :
( v3_membered(A)
=> ! [B] :
( m1_subset_1(B,A)
=> ( v1_xcmplx_0(B)
& v1_xreal_0(B)
& v1_rat_1(B) ) ) ) ).
fof(cc12_waybel_0,axiom,
! [A] :
( l1_orders_2(A)
=> ( ( ~ v3_struct_0(A)
& v2_orders_2(A)
& v3_orders_2(A)
& v4_orders_2(A)
& v1_lattice3(A)
& v1_yellow_0(A)
& v24_waybel_0(A) )
=> ( ~ v3_struct_0(A)
& v2_orders_2(A)
& v3_orders_2(A)
& v4_orders_2(A)
& v1_lattice3(A)
& v2_lattice3(A)
& v3_lattice3(A)
& v1_yellow_0(A)
& v2_yellow_0(A)
& v3_yellow_0(A) ) ) ) ).
fof(cc13_membered,axiom,
! [A] :
( v4_membered(A)
=> ! [B] :
( m1_subset_1(B,A)
=> ( v1_xcmplx_0(B)
& v1_xreal_0(B)
& v1_int_1(B)
& v1_rat_1(B) ) ) ) ).
fof(cc13_waybel_0,axiom,
! [A] :
( l1_orders_2(A)
=> ( ( ~ v3_struct_0(A)
& v2_orders_2(A)
& v4_orders_2(A)
& v25_waybel_0(A) )
=> ( ~ v3_struct_0(A)
& v2_orders_2(A)
& v4_orders_2(A)
& v2_lattice3(A) ) ) ) ).
fof(cc14_membered,axiom,
! [A] :
( v5_membered(A)
=> ! [B] :
( m1_subset_1(B,A)
=> ( v1_xcmplx_0(B)
& v4_ordinal2(B)
& v1_xreal_0(B)
& v1_int_1(B)
& v1_rat_1(B) ) ) ) ).
fof(cc14_waybel_0,axiom,
! [A] :
( l1_orders_2(A)
=> ( ( ~ v3_struct_0(A)
& v2_orders_2(A)
& v4_orders_2(A)
& v2_yellow_0(A)
& v25_waybel_0(A) )
=> ( ~ v3_struct_0(A)
& v2_orders_2(A)
& v4_orders_2(A)
& v1_lattice3(A)
& v2_yellow_0(A) ) ) ) ).
fof(cc15_membered,axiom,
! [A] :
( v1_xboole_0(A)
=> ( v1_membered(A)
& v2_membered(A)
& v3_membered(A)
& v4_membered(A)
& v5_membered(A) ) ) ).
fof(cc16_membered,axiom,
! [A] :
( v1_membered(A)
=> ! [B] :
( m1_subset_1(B,k1_zfmisc_1(A))
=> v1_membered(B) ) ) ).
fof(cc17_membered,axiom,
! [A] :
( v2_membered(A)
=> ! [B] :
( m1_subset_1(B,k1_zfmisc_1(A))
=> ( v1_membered(B)
& v2_membered(B) ) ) ) ).
fof(cc18_membered,axiom,
! [A] :
( v3_membered(A)
=> ! [B] :
( m1_subset_1(B,k1_zfmisc_1(A))
=> ( v1_membered(B)
& v2_membered(B)
& v3_membered(B) ) ) ) ).
fof(cc19_membered,axiom,
! [A] :
( v4_membered(A)
=> ! [B] :
( m1_subset_1(B,k1_zfmisc_1(A))
=> ( v1_membered(B)
& v2_membered(B)
& v3_membered(B)
& v4_membered(B) ) ) ) ).
fof(cc1_finset_1,axiom,
! [A] :
( v1_xboole_0(A)
=> v1_finset_1(A) ) ).
fof(cc1_funct_1,axiom,
! [A] :
( v1_xboole_0(A)
=> v1_funct_1(A) ) ).
fof(cc1_lattice3,axiom,
! [A] :
( l1_orders_2(A)
=> ( v1_lattice3(A)
=> ~ v3_struct_0(A) ) ) ).
fof(cc1_membered,axiom,
! [A] :
( v5_membered(A)
=> v4_membered(A) ) ).
fof(cc1_relset_1,axiom,
! [A,B,C] :
( m1_subset_1(C,k1_zfmisc_1(k2_zfmisc_1(A,B)))
=> v1_relat_1(C) ) ).
fof(cc1_waybel17,axiom,
! [A,B] :
( ( ~ v3_struct_0(A)
& v2_orders_2(A)
& v4_orders_2(A)
& l1_orders_2(A)
& ~ v3_struct_0(B)
& v2_orders_2(B)
& v4_orders_2(B)
& l1_orders_2(B) )
=> ! [C] :
( m1_relset_1(C,u1_struct_0(A),u1_struct_0(B))
=> ( ( v1_funct_1(C)
& v1_funct_2(C,u1_struct_0(A),u1_struct_0(B))
& v22_waybel_0(C,A,B) )
=> ( ~ v1_xboole_0(C)
& v1_funct_1(C)
& v1_funct_2(C,u1_struct_0(A),u1_struct_0(B))
& v5_orders_3(C,A,B)
& v1_partfun1(C,u1_struct_0(A),u1_struct_0(B)) ) ) ) ) ).
fof(cc1_yellow21,axiom,
! [A] :
( l2_altcat_1(A)
=> ( ( ~ v3_struct_0(A)
& v2_altcat_1(A)
& v11_altcat_1(A)
& v12_altcat_1(A)
& v3_yellow21(A) )
=> ( ~ v3_struct_0(A)
& v2_altcat_1(A)
& v11_altcat_1(A)
& v12_altcat_1(A)
& v1_altcat_2(A)
& v2_yellow21(A) ) ) ) ).
fof(cc1_yellow_0,axiom,
! [A] :
( l1_orders_2(A)
=> ( ( ~ v3_struct_0(A)
& v3_lattice3(A) )
=> ( ~ v3_struct_0(A)
& v1_lattice3(A)
& v2_lattice3(A) ) ) ) ).
fof(cc1_yellow_2,axiom,
! [A] :
( l1_orders_2(A)
=> ( ( ~ v3_struct_0(A)
& v2_orders_2(A)
& v3_orders_2(A)
& v4_orders_2(A)
& v2_yellow_0(A)
& v24_waybel_0(A)
& v25_waybel_0(A) )
=> ( ~ v3_struct_0(A)
& v2_orders_2(A)
& v3_orders_2(A)
& v4_orders_2(A)
& v1_yellow_0(A)
& v2_yellow_0(A)
& v3_yellow_0(A)
& v24_waybel_0(A)
& v25_waybel_0(A)
& v1_lattice3(A)
& v2_lattice3(A)
& v3_lattice3(A) ) ) ) ).
fof(cc20_membered,axiom,
! [A] :
( v5_membered(A)
=> ! [B] :
( m1_subset_1(B,k1_zfmisc_1(A))
=> ( v1_membered(B)
& v2_membered(B)
& v3_membered(B)
& v4_membered(B)
& v5_membered(B) ) ) ) ).
fof(cc2_finset_1,axiom,
! [A] :
( v1_finset_1(A)
=> ! [B] :
( m1_subset_1(B,k1_zfmisc_1(A))
=> v1_finset_1(B) ) ) ).
fof(cc2_funct_1,axiom,
! [A] :
( ( v1_relat_1(A)
& v1_xboole_0(A)
& v1_funct_1(A) )
=> ( v1_relat_1(A)
& v1_funct_1(A)
& v2_funct_1(A) ) ) ).
fof(cc2_functor0,axiom,
! [A] :
( l2_altcat_1(A)
=> ( ( ~ v3_struct_0(A)
& v12_altcat_1(A) )
=> ( ~ v3_struct_0(A)
& v1_altcat_2(A) ) ) ) ).
fof(cc2_lattice3,axiom,
! [A] :
( l1_orders_2(A)
=> ( v2_lattice3(A)
=> ~ v3_struct_0(A) ) ) ).
fof(cc2_membered,axiom,
! [A] :
( v4_membered(A)
=> v3_membered(A) ) ).
fof(cc2_setfam_1,axiom,
! [A] :
( ~ v2_setfam_1(A)
=> ~ v1_xboole_0(A) ) ).
fof(cc2_yellow21,axiom,
! [A] :
( l2_altcat_1(A)
=> ( ( ~ v3_struct_0(A)
& v2_altcat_1(A)
& v11_altcat_1(A)
& v12_altcat_1(A)
& v2_yellow21(A) )
=> ( ~ v3_struct_0(A)
& v2_altcat_1(A)
& v9_altcat_1(A)
& v11_altcat_1(A)
& v12_altcat_1(A)
& v1_altcat_2(A)
& v2_yellow18(A)
& v3_yellow18(A)
& v4_yellow18(A)
& v1_yellow21(A) ) ) ) ).
fof(cc3_membered,axiom,
! [A] :
( v3_membered(A)
=> v2_membered(A) ) ).
fof(cc3_yellow_0,axiom,
! [A] :
( l1_orders_2(A)
=> ( ( ~ v3_struct_0(A)
& v3_lattice3(A) )
=> ( ~ v3_struct_0(A)
& v3_yellow_0(A) ) ) ) ).
fof(cc4_membered,axiom,
! [A] :
( v2_membered(A)
=> v1_membered(A) ) ).
fof(cc4_yellow_0,axiom,
! [A] :
( l1_orders_2(A)
=> ( v3_yellow_0(A)
=> ( v1_yellow_0(A)
& v2_yellow_0(A) ) ) ) ).
fof(cc5_yellow21,axiom,
! [A] :
( ( ~ v3_struct_0(A)
& v2_altcat_1(A)
& v11_altcat_1(A)
& v12_altcat_1(A)
& v3_yellow18(A)
& l2_altcat_1(A) )
=> ! [B] :
( m1_altcat_2(B,A)
=> ( ( ~ v3_struct_0(B)
& v2_altcat_1(B)
& v3_altcat_2(B,A) )
=> ( ~ v3_struct_0(B)
& v2_altcat_1(B)
& v11_altcat_1(B)
& v12_altcat_1(B)
& v1_altcat_2(B)
& v3_altcat_2(B,A)
& v3_yellow18(B) ) ) ) ) ).
fof(cc5_yellow_0,axiom,
! [A] :
( l1_orders_2(A)
=> ( ( v1_yellow_0(A)
& v2_yellow_0(A) )
=> v3_yellow_0(A) ) ) ).
fof(cc6_yellow21,axiom,
! [A] :
( ( ~ v3_struct_0(A)
& v2_altcat_1(A)
& v11_altcat_1(A)
& v12_altcat_1(A)
& v2_yellow18(A)
& l2_altcat_1(A) )
=> ! [B] :
( m1_altcat_2(B,A)
=> ( ( ~ v3_struct_0(B)
& v2_altcat_1(B)
& v3_altcat_2(B,A) )
=> ( ~ v3_struct_0(B)
& v2_altcat_1(B)
& v11_altcat_1(B)
& v12_altcat_1(B)
& v1_altcat_2(B)
& v3_altcat_2(B,A)
& v2_yellow18(B) ) ) ) ) ).
fof(cc7_yellow21,axiom,
! [A] :
( ( ~ v3_struct_0(A)
& v2_altcat_1(A)
& v9_altcat_1(A)
& v11_altcat_1(A)
& v12_altcat_1(A)
& l2_altcat_1(A) )
=> ! [B] :
( m1_altcat_2(B,A)
=> ( ( ~ v3_struct_0(B)
& v2_altcat_1(B) )
=> ( ~ v3_struct_0(B)
& v2_altcat_1(B)
& v9_altcat_1(B)
& v11_altcat_1(B) ) ) ) ) ).
fof(cc8_yellow21,axiom,
! [A] :
( ( ~ v3_struct_0(A)
& v2_altcat_1(A)
& v11_altcat_1(A)
& v12_altcat_1(A)
& v1_yellow21(A)
& l2_altcat_1(A) )
=> ! [B] :
( m1_altcat_2(B,A)
=> ( ( ~ v3_struct_0(B)
& v2_altcat_1(B)
& v3_altcat_2(B,A) )
=> ( ~ v3_struct_0(B)
& v2_altcat_1(B)
& v11_altcat_1(B)
& v12_altcat_1(B)
& v1_altcat_2(B)
& v3_altcat_2(B,A)
& v1_yellow21(B) ) ) ) ) ).
fof(cc9_waybel_0,axiom,
! [A] :
( l1_orders_2(A)
=> ( ( v2_orders_2(A)
& v1_lattice3(A)
& v24_waybel_0(A) )
=> ( ~ v3_struct_0(A)
& v2_orders_2(A)
& v1_lattice3(A)
& v2_yellow_0(A) ) ) ) ).
fof(cc9_yellow21,axiom,
! [A] :
( ( ~ v3_struct_0(A)
& v2_altcat_1(A)
& v11_altcat_1(A)
& v12_altcat_1(A)
& v2_yellow21(A)
& l2_altcat_1(A) )
=> ! [B] :
( m1_altcat_2(B,A)
=> ( ( ~ v3_struct_0(B)
& v2_altcat_1(B)
& v3_altcat_2(B,A) )
=> ( ~ v3_struct_0(B)
& v2_altcat_1(B)
& v9_altcat_1(B)
& v11_altcat_1(B)
& v12_altcat_1(B)
& v1_altcat_2(B)
& v3_altcat_2(B,A)
& v2_yellow18(B)
& v3_yellow18(B)
& v4_yellow18(B)
& v1_yellow21(B)
& v2_yellow21(B) ) ) ) ) ).
fof(d11_altcat_2,axiom,
! [A] :
( l2_altcat_1(A)
=> ! [B] :
( l2_altcat_1(B)
=> ( m1_altcat_2(B,A)
<=> ( r1_tarski(u1_struct_0(B),u1_struct_0(A))
& r2_altcat_2(k2_zfmisc_1(u1_struct_0(B),u1_struct_0(B)),k2_zfmisc_1(u1_struct_0(A),u1_struct_0(A)),u1_altcat_1(B),u1_altcat_1(A))
& r2_altcat_2(k3_zfmisc_1(u1_struct_0(B),u1_struct_0(B),u1_struct_0(B)),k3_zfmisc_1(u1_struct_0(A),u1_struct_0(A),u1_struct_0(A)),u2_altcat_1(B),u2_altcat_1(A)) ) ) ) ) ).
fof(d11_waybel34,axiom,
! [A] :
( ~ v2_setfam_1(A)
=> ! [B] :
( ( ~ v3_struct_0(B)
& v2_altcat_1(B)
& v6_altcat_1(B)
& v3_altcat_2(B,k5_waybel34(A))
& m1_altcat_2(B,k5_waybel34(A)) )
=> ( B = k9_waybel34(A)
<=> ( ! [C] :
( m1_subset_1(C,u1_struct_0(k5_waybel34(A)))
=> m1_subset_1(C,u1_struct_0(B)) )
& ! [C] :
( m1_subset_1(C,u1_struct_0(k5_waybel34(A)))
=> ! [D] :
( m1_subset_1(D,u1_struct_0(k5_waybel34(A)))
=> ! [E] :
( m1_subset_1(E,u1_struct_0(B))
=> ! [F] :
( m1_subset_1(F,u1_struct_0(B))
=> ( ( E = C
& F = D )
=> ( k1_altcat_1(k5_waybel34(A),C,D) = k1_xboole_0
| ! [G] :
( m1_subset_1(G,k1_altcat_1(k5_waybel34(A),C,D))
=> ( r2_hidden(G,k1_altcat_1(B,E,F))
<=> v22_waybel_0(k2_waybel34(k3_yellow21(k5_waybel34(A),D),k3_yellow21(k5_waybel34(A),C),k5_yellow21(k5_waybel34(A),C,D,G)),k3_yellow21(k5_waybel34(A),D),k3_yellow21(k5_waybel34(A),C)) ) ) ) ) ) ) ) ) ) ) ) ) ).
fof(d6_yellow21,axiom,
! [A] :
( ( ~ v3_struct_0(A)
& v2_altcat_1(A)
& v11_altcat_1(A)
& v12_altcat_1(A)
& v2_yellow21(A)
& l2_altcat_1(A) )
=> ! [B] :
( m1_subset_1(B,u1_struct_0(A))
=> k3_yellow21(A,B) = B ) ) ).
fof(dt_g1_orders_2,axiom,
! [A,B] :
( m1_relset_1(B,A,A)
=> ( v1_orders_2(g1_orders_2(A,B))
& l1_orders_2(g1_orders_2(A,B)) ) ) ).
fof(dt_g2_altcat_1,axiom,
! [A,B,C] :
( ( m1_pboole(B,k2_zfmisc_1(A,A))
& m3_pboole(C,k3_zfmisc_1(A,A,A),k3_altcat_1(A,B,B),k2_altcat_1(A,B)) )
=> ( v6_altcat_1(g2_altcat_1(A,B,C))
& l2_altcat_1(g2_altcat_1(A,B,C)) ) ) ).
fof(dt_k1_altcat_1,axiom,
$true ).
fof(dt_k1_xboole_0,axiom,
$true ).
fof(dt_k1_yellow21,axiom,
! [A] : l1_struct_0(k1_yellow21(A)) ).
fof(dt_k1_zfmisc_1,axiom,
$true ).
fof(dt_k2_altcat_1,axiom,
! [A,B] :
( m1_pboole(B,k2_zfmisc_1(A,A))
=> m1_pboole(k2_altcat_1(A,B),k3_zfmisc_1(A,A,A)) ) ).
fof(dt_k2_waybel34,axiom,
! [A,B,C] :
( ( v2_orders_2(A)
& v3_orders_2(A)
& v4_orders_2(A)
& v1_lattice3(A)
& v2_lattice3(A)
& l1_orders_2(A)
& v2_orders_2(B)
& v3_orders_2(B)
& v4_orders_2(B)
& v1_lattice3(B)
& v2_lattice3(B)
& l1_orders_2(B)
& v1_funct_1(C)
& v1_funct_2(C,u1_struct_0(B),u1_struct_0(A))
& m1_relset_1(C,u1_struct_0(B),u1_struct_0(A)) )
=> ( v1_funct_1(k2_waybel34(A,B,C))
& v1_funct_2(k2_waybel34(A,B,C),u1_struct_0(A),u1_struct_0(B))
& m2_relset_1(k2_waybel34(A,B,C),u1_struct_0(A),u1_struct_0(B)) ) ) ).
fof(dt_k2_zfmisc_1,axiom,
$true ).
fof(dt_k3_altcat_1,axiom,
! [A,B,C] :
( ( m1_pboole(B,k2_zfmisc_1(A,A))
& m1_pboole(C,k2_zfmisc_1(A,A)) )
=> m1_pboole(k3_altcat_1(A,B,C),k3_zfmisc_1(A,A,A)) ) ).
fof(dt_k3_yellow21,axiom,
! [A,B] :
( ( ~ v3_struct_0(A)
& v2_altcat_1(A)
& v11_altcat_1(A)
& v12_altcat_1(A)
& v2_yellow21(A)
& l2_altcat_1(A)
& m1_subset_1(B,u1_struct_0(A)) )
=> ( v2_orders_2(k3_yellow21(A,B))
& v3_orders_2(k3_yellow21(A,B))
& v4_orders_2(k3_yellow21(A,B))
& v1_lattice3(k3_yellow21(A,B))
& v2_lattice3(k3_yellow21(A,B))
& l1_orders_2(k3_yellow21(A,B)) ) ) ).
fof(dt_k3_zfmisc_1,axiom,
$true ).
fof(dt_k5_waybel34,axiom,
! [A] :
( ~ v1_xboole_0(A)
=> ( ~ v3_struct_0(k5_waybel34(A))
& v2_altcat_1(k5_waybel34(A))
& v6_altcat_1(k5_waybel34(A))
& v11_altcat_1(k5_waybel34(A))
& v12_altcat_1(k5_waybel34(A))
& v2_yellow21(k5_waybel34(A))
& l2_altcat_1(k5_waybel34(A)) ) ) ).
fof(dt_k5_yellow21,axiom,
! [A,B,C,D] :
( ( ~ v3_struct_0(A)
& v2_altcat_1(A)
& v11_altcat_1(A)
& v12_altcat_1(A)
& v2_yellow21(A)
& l2_altcat_1(A)
& m1_subset_1(B,u1_struct_0(A))
& m1_subset_1(C,u1_struct_0(A))
& m1_subset_1(D,k1_altcat_1(A,B,C)) )
=> ( v1_funct_1(k5_yellow21(A,B,C,D))
& v1_funct_2(k5_yellow21(A,B,C,D),u1_struct_0(k3_yellow21(A,B)),u1_struct_0(k3_yellow21(A,C)))
& v5_orders_3(k5_yellow21(A,B,C,D),k3_yellow21(A,B),k3_yellow21(A,C))
& m2_relset_1(k5_yellow21(A,B,C,D),u1_struct_0(k3_yellow21(A,B)),u1_struct_0(k3_yellow21(A,C))) ) ) ).
fof(dt_k9_waybel34,axiom,
! [A] :
( ~ v2_setfam_1(A)
=> ( ~ v3_struct_0(k9_waybel34(A))
& v2_altcat_1(k9_waybel34(A))
& v6_altcat_1(k9_waybel34(A))
& v3_altcat_2(k9_waybel34(A),k5_waybel34(A))
& m1_altcat_2(k9_waybel34(A),k5_waybel34(A)) ) ) ).
fof(dt_l1_altcat_1,axiom,
! [A] :
( l1_altcat_1(A)
=> l1_struct_0(A) ) ).
fof(dt_l1_orders_2,axiom,
! [A] :
( l1_orders_2(A)
=> l1_struct_0(A) ) ).
fof(dt_l1_struct_0,axiom,
$true ).
fof(dt_l2_altcat_1,axiom,
! [A] :
( l2_altcat_1(A)
=> l1_altcat_1(A) ) ).
fof(dt_m1_altcat_2,axiom,
! [A] :
( l2_altcat_1(A)
=> ! [B] :
( m1_altcat_2(B,A)
=> l2_altcat_1(B) ) ) ).
fof(dt_m1_pboole,axiom,
! [A,B] :
( m1_pboole(B,A)
=> ( v1_relat_1(B)
& v1_funct_1(B) ) ) ).
fof(dt_m1_relset_1,axiom,
$true ).
fof(dt_m1_subset_1,axiom,
$true ).
fof(dt_m2_relset_1,axiom,
! [A,B,C] :
( m2_relset_1(C,A,B)
=> m1_subset_1(C,k1_zfmisc_1(k2_zfmisc_1(A,B))) ) ).
fof(dt_m3_pboole,axiom,
! [A,B,C] :
( ( m1_pboole(B,A)
& m1_pboole(C,A) )
=> ! [D] :
( m3_pboole(D,A,B,C)
=> m1_pboole(D,A) ) ) ).
fof(dt_u1_altcat_1,axiom,
! [A] :
( l1_altcat_1(A)
=> m1_pboole(u1_altcat_1(A),k2_zfmisc_1(u1_struct_0(A),u1_struct_0(A))) ) ).
fof(dt_u1_orders_2,axiom,
! [A] :
( l1_orders_2(A)
=> m2_relset_1(u1_orders_2(A),u1_struct_0(A),u1_struct_0(A)) ) ).
fof(dt_u1_struct_0,axiom,
$true ).
fof(dt_u2_altcat_1,axiom,
! [A] :
( l2_altcat_1(A)
=> m3_pboole(u2_altcat_1(A),k3_zfmisc_1(u1_struct_0(A),u1_struct_0(A),u1_struct_0(A)),k3_altcat_1(u1_struct_0(A),u1_altcat_1(A),u1_altcat_1(A)),k2_altcat_1(u1_struct_0(A),u1_altcat_1(A))) ) ).
fof(existence_l1_altcat_1,axiom,
? [A] : l1_altcat_1(A) ).
fof(existence_l1_orders_2,axiom,
? [A] : l1_orders_2(A) ).
fof(existence_l1_struct_0,axiom,
? [A] : l1_struct_0(A) ).
fof(existence_l2_altcat_1,axiom,
? [A] : l2_altcat_1(A) ).
fof(existence_m1_altcat_2,axiom,
! [A] :
( l2_altcat_1(A)
=> ? [B] : m1_altcat_2(B,A) ) ).
fof(existence_m1_pboole,axiom,
! [A] :
? [B] : m1_pboole(B,A) ).
fof(existence_m1_relset_1,axiom,
! [A,B] :
? [C] : m1_relset_1(C,A,B) ).
fof(existence_m1_subset_1,axiom,
! [A] :
? [B] : m1_subset_1(B,A) ).
fof(existence_m2_relset_1,axiom,
! [A,B] :
? [C] : m2_relset_1(C,A,B) ).
fof(existence_m3_pboole,axiom,
! [A,B,C] :
( ( m1_pboole(B,A)
& m1_pboole(C,A) )
=> ? [D] : m3_pboole(D,A,B,C) ) ).
fof(fc10_waybel_8,axiom,
! [A] :
( ( ~ v3_struct_0(A)
& v2_orders_2(A)
& v24_waybel_0(A)
& l1_orders_2(A) )
=> ( ~ v3_struct_0(g1_orders_2(u1_struct_0(A),u1_orders_2(A)))
& v1_orders_2(g1_orders_2(u1_struct_0(A),u1_orders_2(A)))
& v2_orders_2(g1_orders_2(u1_struct_0(A),u1_orders_2(A)))
& v24_waybel_0(g1_orders_2(u1_struct_0(A),u1_orders_2(A))) ) ) ).
fof(fc14_finset_1,axiom,
! [A,B] :
( ( v1_finset_1(A)
& v1_finset_1(B) )
=> v1_finset_1(k2_zfmisc_1(A,B)) ) ).
fof(fc15_finset_1,axiom,
! [A,B,C] :
( ( v1_finset_1(A)
& v1_finset_1(B)
& v1_finset_1(C) )
=> v1_finset_1(k3_zfmisc_1(A,B,C)) ) ).
fof(fc1_altcat_4,axiom,
! [A,B] :
( ( ~ v3_struct_0(A)
& v12_altcat_1(A)
& l2_altcat_1(A)
& m1_subset_1(B,u1_struct_0(A)) )
=> ~ v1_xboole_0(k1_altcat_1(A,B,B)) ) ).
fof(fc1_struct_0,axiom,
! [A] :
( ( ~ v3_struct_0(A)
& l1_struct_0(A) )
=> ~ v1_xboole_0(u1_struct_0(A)) ) ).
fof(fc4_waybel_8,axiom,
! [A] :
( ( ~ v3_struct_0(A)
& l1_orders_2(A) )
=> ( ~ v3_struct_0(g1_orders_2(u1_struct_0(A),u1_orders_2(A)))
& v1_orders_2(g1_orders_2(u1_struct_0(A),u1_orders_2(A))) ) ) ).
fof(fc5_waybel_8,axiom,
! [A] :
( ( ~ v3_struct_0(A)
& v2_orders_2(A)
& l1_orders_2(A) )
=> ( ~ v3_struct_0(g1_orders_2(u1_struct_0(A),u1_orders_2(A)))
& v1_orders_2(g1_orders_2(u1_struct_0(A),u1_orders_2(A)))
& v2_orders_2(g1_orders_2(u1_struct_0(A),u1_orders_2(A))) ) ) ).
fof(fc6_membered,axiom,
( v1_xboole_0(k1_xboole_0)
& v1_membered(k1_xboole_0)
& v2_membered(k1_xboole_0)
& v3_membered(k1_xboole_0)
& v4_membered(k1_xboole_0)
& v5_membered(k1_xboole_0) ) ).
fof(fc6_waybel34,axiom,
! [A] :
( ~ v2_setfam_1(A)
=> ( ~ v3_struct_0(k5_waybel34(A))
& v2_altcat_1(k5_waybel34(A))
& v6_altcat_1(k5_waybel34(A))
& v9_altcat_1(k5_waybel34(A))
& v11_altcat_1(k5_waybel34(A))
& v12_altcat_1(k5_waybel34(A))
& v1_altcat_2(k5_waybel34(A))
& v2_yellow18(k5_waybel34(A))
& v3_yellow18(k5_waybel34(A))
& v4_yellow18(k5_waybel34(A))
& v1_yellow21(k5_waybel34(A))
& v2_yellow21(k5_waybel34(A))
& v3_yellow21(k5_waybel34(A)) ) ) ).
fof(fc6_waybel_8,axiom,
! [A] :
( ( v3_orders_2(A)
& l1_orders_2(A) )
=> ( v1_orders_2(g1_orders_2(u1_struct_0(A),u1_orders_2(A)))
& v3_orders_2(g1_orders_2(u1_struct_0(A),u1_orders_2(A))) ) ) ).
fof(fc7_waybel_8,axiom,
! [A] :
( ( v4_orders_2(A)
& l1_orders_2(A) )
=> ( v1_orders_2(g1_orders_2(u1_struct_0(A),u1_orders_2(A)))
& v4_orders_2(g1_orders_2(u1_struct_0(A),u1_orders_2(A))) ) ) ).
fof(fc8_waybel_8,axiom,
! [A] :
( ( v2_lattice3(A)
& l1_orders_2(A) )
=> ( ~ v3_struct_0(g1_orders_2(u1_struct_0(A),u1_orders_2(A)))
& v1_orders_2(g1_orders_2(u1_struct_0(A),u1_orders_2(A)))
& v2_lattice3(g1_orders_2(u1_struct_0(A),u1_orders_2(A))) ) ) ).
fof(fc9_waybel_8,axiom,
! [A] :
( ( v1_lattice3(A)
& l1_orders_2(A) )
=> ( ~ v3_struct_0(g1_orders_2(u1_struct_0(A),u1_orders_2(A)))
& v1_orders_2(g1_orders_2(u1_struct_0(A),u1_orders_2(A)))
& v1_lattice3(g1_orders_2(u1_struct_0(A),u1_orders_2(A))) ) ) ).
fof(free_g1_orders_2,axiom,
! [A,B] :
( m1_relset_1(B,A,A)
=> ! [C,D] :
( g1_orders_2(A,B) = g1_orders_2(C,D)
=> ( A = C
& B = D ) ) ) ).
fof(free_g2_altcat_1,axiom,
! [A,B,C] :
( ( m1_pboole(B,k2_zfmisc_1(A,A))
& m3_pboole(C,k3_zfmisc_1(A,A,A),k3_altcat_1(A,B,B),k2_altcat_1(A,B)) )
=> ! [D,E,F] :
( g2_altcat_1(A,B,C) = g2_altcat_1(D,E,F)
=> ( A = D
& B = E
& C = F ) ) ) ).
fof(rc13_waybel_0,axiom,
? [A] :
( l1_orders_2(A)
& ~ v3_struct_0(A)
& v1_orders_2(A)
& v2_orders_2(A)
& v3_orders_2(A)
& v4_orders_2(A)
& v1_lattice3(A)
& v2_lattice3(A)
& v3_lattice3(A)
& v1_yellow_0(A)
& v2_yellow_0(A)
& v3_yellow_0(A)
& v24_waybel_0(A)
& v25_waybel_0(A) ) ).
fof(rc1_finset_1,axiom,
? [A] :
( ~ v1_xboole_0(A)
& v1_finset_1(A) ) ).
fof(rc1_funct_1,axiom,
? [A] :
( v1_relat_1(A)
& v1_funct_1(A) ) ).
fof(rc1_lattice3,axiom,
? [A] :
( l1_orders_2(A)
& ~ v3_struct_0(A)
& v1_orders_2(A)
& v2_orders_2(A)
& v3_orders_2(A)
& v4_orders_2(A)
& v3_lattice3(A) ) ).
fof(rc1_membered,axiom,
? [A] :
( ~ v1_xboole_0(A)
& v1_membered(A)
& v2_membered(A)
& v3_membered(A)
& v4_membered(A)
& v5_membered(A) ) ).
fof(rc1_waybel10,axiom,
! [A,B] :
( ( l1_orders_2(A)
& ~ v3_struct_0(B)
& v2_orders_2(B)
& l1_orders_2(B) )
=> ? [C] :
( m1_relset_1(C,u1_struct_0(A),u1_struct_0(B))
& v1_relat_1(C)
& v1_funct_1(C)
& v1_funct_2(C,u1_struct_0(A),u1_struct_0(B))
& v1_partfun1(C,u1_struct_0(A),u1_struct_0(B))
& v5_orders_3(C,A,B) ) ) ).
fof(rc1_yellow21,axiom,
? [A] :
( l2_altcat_1(A)
& ~ v3_struct_0(A)
& v2_altcat_1(A)
& v6_altcat_1(A)
& v9_altcat_1(A)
& v11_altcat_1(A)
& v12_altcat_1(A)
& v1_altcat_2(A)
& v2_yellow18(A)
& v3_yellow18(A)
& v4_yellow18(A)
& v1_yellow21(A)
& v2_yellow21(A)
& v3_yellow21(A) ) ).
fof(rc2_funct_1,axiom,
? [A] :
( v1_relat_1(A)
& v1_xboole_0(A)
& v1_funct_1(A) ) ).
fof(rc2_lattice3,axiom,
? [A] :
( l1_orders_2(A)
& ~ v3_struct_0(A)
& v1_orders_2(A)
& v2_orders_2(A)
& v3_orders_2(A)
& v4_orders_2(A)
& v1_lattice3(A)
& v2_lattice3(A)
& v3_lattice3(A) ) ).
fof(rc2_setfam_1,axiom,
? [A] : ~ v2_setfam_1(A) ).
fof(rc2_yellow_0,axiom,
? [A] :
( l1_orders_2(A)
& ~ v3_struct_0(A)
& v2_orders_2(A)
& v3_orders_2(A)
& v4_orders_2(A)
& v1_lattice3(A)
& v2_lattice3(A)
& v3_lattice3(A)
& v1_yellow_0(A)
& v2_yellow_0(A)
& v3_yellow_0(A) ) ).
fof(rc3_finset_1,axiom,
! [A] :
( ~ v1_xboole_0(A)
=> ? [B] :
( m1_subset_1(B,k1_zfmisc_1(A))
& ~ v1_xboole_0(B)
& v1_finset_1(B) ) ) ).
fof(rc3_funct_1,axiom,
? [A] :
( v1_relat_1(A)
& v1_funct_1(A)
& v2_funct_1(A) ) ).
fof(rc3_setfam_1,axiom,
! [A] :
( ~ v2_setfam_1(A)
=> ? [B] :
( m1_subset_1(B,A)
& ~ v1_xboole_0(B) ) ) ).
fof(rc3_struct_0,axiom,
? [A] :
( l1_struct_0(A)
& ~ v3_struct_0(A) ) ).
fof(rc4_finset_1,axiom,
! [A] :
( ~ v1_xboole_0(A)
=> ? [B] :
( m1_subset_1(B,k1_zfmisc_1(A))
& ~ v1_xboole_0(B)
& v1_finset_1(B) ) ) ).
fof(rc5_struct_0,axiom,
! [A] :
( ( ~ v3_struct_0(A)
& l1_struct_0(A) )
=> ? [B] :
( m1_subset_1(B,k1_zfmisc_1(u1_struct_0(A)))
& ~ v1_xboole_0(B) ) ) ).
fof(rc7_functor0,axiom,
? [A] :
( l2_altcat_1(A)
& ~ v3_struct_0(A)
& v1_altcat_2(A) ) ).
fof(redefinition_k3_yellow21,axiom,
! [A,B] :
( ( ~ v3_struct_0(A)
& v2_altcat_1(A)
& v11_altcat_1(A)
& v12_altcat_1(A)
& v2_yellow21(A)
& l2_altcat_1(A)
& m1_subset_1(B,u1_struct_0(A)) )
=> k3_yellow21(A,B) = k1_yellow21(B) ) ).
fof(redefinition_m2_relset_1,axiom,
! [A,B,C] :
( m2_relset_1(C,A,B)
<=> m1_relset_1(C,A,B) ) ).
fof(redefinition_r2_altcat_2,axiom,
! [A,B,C,D] :
( ( m1_pboole(C,A)
& m1_pboole(D,B) )
=> ( r2_altcat_2(A,B,C,D)
<=> r1_altcat_2(C,D) ) ) ).
fof(reflexivity_r1_altcat_2,axiom,
! [A,B] :
( ( v1_relat_1(A)
& v1_funct_1(A)
& v1_relat_1(B)
& v1_funct_1(B) )
=> r1_altcat_2(A,A) ) ).
fof(reflexivity_r1_tarski,axiom,
! [A,B] : r1_tarski(A,A) ).
fof(reflexivity_r2_altcat_2,axiom,
! [A,B,C,D] :
( ( m1_pboole(C,A)
& m1_pboole(D,B) )
=> r2_altcat_2(A,B,C,C) ) ).
fof(t15_waybel34,axiom,
! [A] :
( ~ v2_setfam_1(A)
=> ! [B] :
( ( v2_orders_2(B)
& v3_orders_2(B)
& v4_orders_2(B)
& v1_lattice3(B)
& v2_lattice3(B)
& l1_orders_2(B) )
=> ( m1_subset_1(B,u1_struct_0(k5_waybel34(A)))
<=> ( v1_orders_2(B)
& v3_lattice3(B)
& r2_hidden(u1_struct_0(B),A) ) ) ) ) ).
fof(t1_subset,axiom,
! [A,B] :
( r2_hidden(A,B)
=> m1_subset_1(A,B) ) ).
fof(t2_subset,axiom,
! [A,B] :
( m1_subset_1(A,B)
=> ( v1_xboole_0(B)
| r2_hidden(A,B) ) ) ).
fof(t3_subset,axiom,
! [A,B] :
( m1_subset_1(A,k1_zfmisc_1(B))
<=> r1_tarski(A,B) ) ).
fof(t4_subset,axiom,
! [A,B,C] :
( ( r2_hidden(A,B)
& m1_subset_1(B,k1_zfmisc_1(C)) )
=> m1_subset_1(A,C) ) ).
fof(t5_subset,axiom,
! [A,B,C] :
~ ( r2_hidden(A,B)
& m1_subset_1(B,k1_zfmisc_1(C))
& v1_xboole_0(C) ) ).
fof(t6_boole,axiom,
! [A] :
( v1_xboole_0(A)
=> A = k1_xboole_0 ) ).
fof(t7_boole,axiom,
! [A,B] :
~ ( r2_hidden(A,B)
& v1_xboole_0(B) ) ).
fof(t8_boole,axiom,
! [A,B] :
~ ( v1_xboole_0(A)
& A != B
& v1_xboole_0(B) ) ).
%------------------------------------------------------------------------------