TPTP Problem File: LAT357+1.p
View Solutions
- Solve Problem
%------------------------------------------------------------------------------
% File : LAT357+1 : TPTP v9.0.0. Released v3.4.0.
% Domain : Lattice Theory
% Problem : Duality Based on Galois Connection - Part I T08
% Version : [Urb08] axioms : Especial.
% English :
% Refs : [Ban01] Bancerek (2001), Duality Based on the Galois Connectio
% : [Urb07] Urban (2007), MPTP 0.2: Design, Implementation, and In
% : [Urb08] Urban (2006), Email to G. Sutcliffe
% Source : [Urb08]
% Names : t8_waybel34 [Urb08]
% Status : Theorem
% Rating : 0.73 v9.0.0, 0.72 v8.2.0, 0.75 v8.1.0, 0.72 v7.5.0, 0.75 v7.4.0, 0.63 v7.3.0, 0.66 v7.2.0, 0.62 v7.1.0, 0.70 v6.4.0, 0.73 v6.3.0, 0.71 v6.2.0, 0.92 v6.1.0, 0.97 v6.0.0, 0.87 v5.5.0, 0.89 v5.4.0, 0.93 v5.2.0, 0.90 v5.0.0, 1.00 v3.4.0
% Syntax : Number of formulae : 116 ( 19 unt; 0 def)
% Number of atoms : 694 ( 8 equ)
% Maximal formula atoms : 30 ( 5 avg)
% Number of connectives : 650 ( 72 ~; 1 |; 438 &)
% ( 3 <=>; 136 =>; 0 <=; 0 <~>)
% Maximal formula depth : 22 ( 6 avg)
% Maximal term depth : 4 ( 1 avg)
% Number of predicates : 49 ( 47 usr; 1 prp; 0-3 aty)
% Number of functors : 11 ( 11 usr; 1 con; 0-5 aty)
% Number of variables : 210 ( 188 !; 22 ?)
% SPC : FOF_THM_RFO_SEQ
% Comments : Normal version: includes the axioms (which may be theorems from
% other articles) and background that are possibly necessary.
% : Translated by MPTP from the Mizar Mathematical Library 4.48.930.
% : The problem encoding is based on set theory.
%------------------------------------------------------------------------------
fof(t8_waybel34,conjecture,
! [A] :
( ( v2_orders_2(A)
& v3_orders_2(A)
& v4_orders_2(A)
& v1_lattice3(A)
& v2_lattice3(A)
& v3_lattice3(A)
& l1_orders_2(A) )
=> ! [B] :
( ( v2_orders_2(B)
& v3_orders_2(B)
& v4_orders_2(B)
& v1_lattice3(B)
& v2_lattice3(B)
& v3_lattice3(B)
& l1_orders_2(B) )
=> ! [C] :
( ( v2_orders_2(C)
& v3_orders_2(C)
& v4_orders_2(C)
& v1_lattice3(C)
& v2_lattice3(C)
& v3_lattice3(C)
& l1_orders_2(C) )
=> ! [D] :
( ( v1_funct_1(D)
& v1_funct_2(D,u1_struct_0(A),u1_struct_0(B))
& v17_waybel_0(D,A,B)
& m2_relset_1(D,u1_struct_0(A),u1_struct_0(B)) )
=> ! [E] :
( ( v1_funct_1(E)
& v1_funct_2(E,u1_struct_0(B),u1_struct_0(C))
& v17_waybel_0(E,B,C)
& m2_relset_1(E,u1_struct_0(B),u1_struct_0(C)) )
=> k1_waybel34(A,C,k7_funct_2(u1_struct_0(A),u1_struct_0(B),u1_struct_0(C),D,E)) = k7_funct_2(u1_struct_0(C),u1_struct_0(B),u1_struct_0(A),k1_waybel34(B,C,E),k1_waybel34(A,B,D)) ) ) ) ) ) ).
fof(antisymmetry_r2_hidden,axiom,
! [A,B] :
( r2_hidden(A,B)
=> ~ r2_hidden(B,A) ) ).
fof(cc10_membered,axiom,
! [A] :
( v1_membered(A)
=> ! [B] :
( m1_subset_1(B,A)
=> v1_xcmplx_0(B) ) ) ).
fof(cc10_waybel_0,axiom,
! [A] :
( l1_orders_2(A)
=> ( ( ~ v3_struct_0(A)
& v2_orders_2(A)
& v3_lattice3(A) )
=> ( ~ v3_struct_0(A)
& v2_orders_2(A)
& v24_waybel_0(A)
& v25_waybel_0(A) ) ) ) ).
fof(cc11_membered,axiom,
! [A] :
( v2_membered(A)
=> ! [B] :
( m1_subset_1(B,A)
=> ( v1_xcmplx_0(B)
& v1_xreal_0(B) ) ) ) ).
fof(cc11_waybel_0,axiom,
! [A] :
( l1_orders_2(A)
=> ( ( ~ v3_struct_0(A)
& v2_orders_2(A)
& v25_waybel_0(A) )
=> ( ~ v3_struct_0(A)
& v2_orders_2(A)
& v1_yellow_0(A) ) ) ) ).
fof(cc12_membered,axiom,
! [A] :
( v3_membered(A)
=> ! [B] :
( m1_subset_1(B,A)
=> ( v1_xcmplx_0(B)
& v1_xreal_0(B)
& v1_rat_1(B) ) ) ) ).
fof(cc12_waybel_0,axiom,
! [A] :
( l1_orders_2(A)
=> ( ( ~ v3_struct_0(A)
& v2_orders_2(A)
& v3_orders_2(A)
& v4_orders_2(A)
& v1_lattice3(A)
& v1_yellow_0(A)
& v24_waybel_0(A) )
=> ( ~ v3_struct_0(A)
& v2_orders_2(A)
& v3_orders_2(A)
& v4_orders_2(A)
& v1_lattice3(A)
& v2_lattice3(A)
& v3_lattice3(A)
& v1_yellow_0(A)
& v2_yellow_0(A)
& v3_yellow_0(A) ) ) ) ).
fof(cc13_membered,axiom,
! [A] :
( v4_membered(A)
=> ! [B] :
( m1_subset_1(B,A)
=> ( v1_xcmplx_0(B)
& v1_xreal_0(B)
& v1_int_1(B)
& v1_rat_1(B) ) ) ) ).
fof(cc13_waybel_0,axiom,
! [A] :
( l1_orders_2(A)
=> ( ( ~ v3_struct_0(A)
& v2_orders_2(A)
& v4_orders_2(A)
& v25_waybel_0(A) )
=> ( ~ v3_struct_0(A)
& v2_orders_2(A)
& v4_orders_2(A)
& v2_lattice3(A) ) ) ) ).
fof(cc14_membered,axiom,
! [A] :
( v5_membered(A)
=> ! [B] :
( m1_subset_1(B,A)
=> ( v1_xcmplx_0(B)
& v4_ordinal2(B)
& v1_xreal_0(B)
& v1_int_1(B)
& v1_rat_1(B) ) ) ) ).
fof(cc14_waybel_0,axiom,
! [A] :
( l1_orders_2(A)
=> ( ( ~ v3_struct_0(A)
& v2_orders_2(A)
& v4_orders_2(A)
& v2_yellow_0(A)
& v25_waybel_0(A) )
=> ( ~ v3_struct_0(A)
& v2_orders_2(A)
& v4_orders_2(A)
& v1_lattice3(A)
& v2_yellow_0(A) ) ) ) ).
fof(cc15_membered,axiom,
! [A] :
( v1_xboole_0(A)
=> ( v1_membered(A)
& v2_membered(A)
& v3_membered(A)
& v4_membered(A)
& v5_membered(A) ) ) ).
fof(cc16_membered,axiom,
! [A] :
( v1_membered(A)
=> ! [B] :
( m1_subset_1(B,k1_zfmisc_1(A))
=> v1_membered(B) ) ) ).
fof(cc17_membered,axiom,
! [A] :
( v2_membered(A)
=> ! [B] :
( m1_subset_1(B,k1_zfmisc_1(A))
=> ( v1_membered(B)
& v2_membered(B) ) ) ) ).
fof(cc18_membered,axiom,
! [A] :
( v3_membered(A)
=> ! [B] :
( m1_subset_1(B,k1_zfmisc_1(A))
=> ( v1_membered(B)
& v2_membered(B)
& v3_membered(B) ) ) ) ).
fof(cc19_membered,axiom,
! [A] :
( v4_membered(A)
=> ! [B] :
( m1_subset_1(B,k1_zfmisc_1(A))
=> ( v1_membered(B)
& v2_membered(B)
& v3_membered(B)
& v4_membered(B) ) ) ) ).
fof(cc1_finset_1,axiom,
! [A] :
( v1_xboole_0(A)
=> v1_finset_1(A) ) ).
fof(cc1_funct_1,axiom,
! [A] :
( v1_xboole_0(A)
=> v1_funct_1(A) ) ).
fof(cc1_lattice3,axiom,
! [A] :
( l1_orders_2(A)
=> ( v1_lattice3(A)
=> ~ v3_struct_0(A) ) ) ).
fof(cc1_membered,axiom,
! [A] :
( v5_membered(A)
=> v4_membered(A) ) ).
fof(cc1_relset_1,axiom,
! [A,B,C] :
( m1_subset_1(C,k1_zfmisc_1(k2_zfmisc_1(A,B)))
=> v1_relat_1(C) ) ).
fof(cc1_setfam_1,axiom,
! [A] :
( ( ~ v1_xboole_0(A)
& v1_setfam_1(A) )
=> ! [B] :
( m1_subset_1(B,A)
=> ~ v1_xboole_0(B) ) ) ).
fof(cc1_waybel17,axiom,
! [A,B] :
( ( ~ v3_struct_0(A)
& v2_orders_2(A)
& v4_orders_2(A)
& l1_orders_2(A)
& ~ v3_struct_0(B)
& v2_orders_2(B)
& v4_orders_2(B)
& l1_orders_2(B) )
=> ! [C] :
( m1_relset_1(C,u1_struct_0(A),u1_struct_0(B))
=> ( ( v1_funct_1(C)
& v1_funct_2(C,u1_struct_0(A),u1_struct_0(B))
& v22_waybel_0(C,A,B) )
=> ( ~ v1_xboole_0(C)
& v1_funct_1(C)
& v1_funct_2(C,u1_struct_0(A),u1_struct_0(B))
& v5_orders_3(C,A,B)
& v1_partfun1(C,u1_struct_0(A),u1_struct_0(B)) ) ) ) ) ).
fof(cc1_waybel21,axiom,
! [A,B] :
( ( v2_orders_2(A)
& v3_orders_2(A)
& v4_orders_2(A)
& v2_lattice3(A)
& l1_orders_2(A)
& v2_orders_2(B)
& v3_orders_2(B)
& v4_orders_2(B)
& v2_lattice3(B)
& l1_orders_2(B) )
=> ! [C] :
( m1_relset_1(C,u1_struct_0(A),u1_struct_0(B))
=> ( ( v1_funct_1(C)
& v1_funct_2(C,u1_struct_0(A),u1_struct_0(B))
& v19_waybel_0(C,A,B) )
=> ( v1_funct_1(C)
& v1_funct_2(C,u1_struct_0(A),u1_struct_0(B))
& v5_orders_3(C,A,B) ) ) ) ) ).
fof(cc1_yellow_0,axiom,
! [A] :
( l1_orders_2(A)
=> ( ( ~ v3_struct_0(A)
& v3_lattice3(A) )
=> ( ~ v3_struct_0(A)
& v1_lattice3(A)
& v2_lattice3(A) ) ) ) ).
fof(cc1_yellow_2,axiom,
! [A] :
( l1_orders_2(A)
=> ( ( ~ v3_struct_0(A)
& v2_orders_2(A)
& v3_orders_2(A)
& v4_orders_2(A)
& v2_yellow_0(A)
& v24_waybel_0(A)
& v25_waybel_0(A) )
=> ( ~ v3_struct_0(A)
& v2_orders_2(A)
& v3_orders_2(A)
& v4_orders_2(A)
& v1_yellow_0(A)
& v2_yellow_0(A)
& v3_yellow_0(A)
& v24_waybel_0(A)
& v25_waybel_0(A)
& v1_lattice3(A)
& v2_lattice3(A)
& v3_lattice3(A) ) ) ) ).
fof(cc20_membered,axiom,
! [A] :
( v5_membered(A)
=> ! [B] :
( m1_subset_1(B,k1_zfmisc_1(A))
=> ( v1_membered(B)
& v2_membered(B)
& v3_membered(B)
& v4_membered(B)
& v5_membered(B) ) ) ) ).
fof(cc2_finset_1,axiom,
! [A] :
( v1_finset_1(A)
=> ! [B] :
( m1_subset_1(B,k1_zfmisc_1(A))
=> v1_finset_1(B) ) ) ).
fof(cc2_funct_1,axiom,
! [A] :
( ( v1_relat_1(A)
& v1_xboole_0(A)
& v1_funct_1(A) )
=> ( v1_relat_1(A)
& v1_funct_1(A)
& v2_funct_1(A) ) ) ).
fof(cc2_lattice3,axiom,
! [A] :
( l1_orders_2(A)
=> ( v2_lattice3(A)
=> ~ v3_struct_0(A) ) ) ).
fof(cc2_membered,axiom,
! [A] :
( v4_membered(A)
=> v3_membered(A) ) ).
fof(cc2_waybel_1,axiom,
! [A,B] :
( ( ~ v3_struct_0(A)
& v2_orders_2(A)
& v3_orders_2(A)
& v4_orders_2(A)
& l1_orders_2(A)
& ~ v3_struct_0(B)
& v2_orders_2(B)
& v3_orders_2(B)
& v4_orders_2(B)
& l1_orders_2(B) )
=> ! [C] :
( m1_relset_1(C,u1_struct_0(A),u1_struct_0(B))
=> ( ( v1_funct_1(C)
& v1_funct_2(C,u1_struct_0(A),u1_struct_0(B))
& v5_waybel_1(C,B,A) )
=> ( v1_funct_1(C)
& ~ v1_xboole_0(C)
& v1_funct_2(C,u1_struct_0(A),u1_struct_0(B))
& v1_partfun1(C,u1_struct_0(A),u1_struct_0(B))
& v18_waybel_0(C,A,B)
& v20_waybel_0(C,A,B)
& v22_waybel_0(C,A,B) ) ) ) ) ).
fof(cc3_membered,axiom,
! [A] :
( v3_membered(A)
=> v2_membered(A) ) ).
fof(cc3_yellow_0,axiom,
! [A] :
( l1_orders_2(A)
=> ( ( ~ v3_struct_0(A)
& v3_lattice3(A) )
=> ( ~ v3_struct_0(A)
& v3_yellow_0(A) ) ) ) ).
fof(cc4_membered,axiom,
! [A] :
( v2_membered(A)
=> v1_membered(A) ) ).
fof(cc4_yellow_0,axiom,
! [A] :
( l1_orders_2(A)
=> ( v3_yellow_0(A)
=> ( v1_yellow_0(A)
& v2_yellow_0(A) ) ) ) ).
fof(cc5_yellow_0,axiom,
! [A] :
( l1_orders_2(A)
=> ( ( v1_yellow_0(A)
& v2_yellow_0(A) )
=> v3_yellow_0(A) ) ) ).
fof(cc6_waybel_0,axiom,
! [A,B] :
( ( ~ v3_struct_0(A)
& l1_orders_2(A)
& ~ v3_struct_0(B)
& l1_orders_2(B) )
=> ! [C] :
( m1_relset_1(C,u1_struct_0(A),u1_struct_0(B))
=> ( ( v1_funct_1(C)
& v1_funct_2(C,u1_struct_0(A),u1_struct_0(B))
& v17_waybel_0(C,A,B) )
=> ( v1_funct_1(C)
& v1_funct_2(C,u1_struct_0(A),u1_struct_0(B))
& v19_waybel_0(C,A,B)
& v21_waybel_0(C,A,B) ) ) ) ) ).
fof(cc7_waybel_0,axiom,
! [A,B] :
( ( ~ v3_struct_0(A)
& l1_orders_2(A)
& ~ v3_struct_0(B)
& l1_orders_2(B) )
=> ! [C] :
( m1_relset_1(C,u1_struct_0(A),u1_struct_0(B))
=> ( ( v1_funct_1(C)
& v1_funct_2(C,u1_struct_0(A),u1_struct_0(B))
& v18_waybel_0(C,A,B) )
=> ( v1_funct_1(C)
& v1_funct_2(C,u1_struct_0(A),u1_struct_0(B))
& v20_waybel_0(C,A,B)
& v22_waybel_0(C,A,B) ) ) ) ) ).
fof(cc9_waybel_0,axiom,
! [A] :
( l1_orders_2(A)
=> ( ( v2_orders_2(A)
& v1_lattice3(A)
& v24_waybel_0(A) )
=> ( ~ v3_struct_0(A)
& v2_orders_2(A)
& v1_lattice3(A)
& v2_yellow_0(A) ) ) ) ).
fof(commutativity_k2_tarski,axiom,
! [A,B] : k2_tarski(A,B) = k2_tarski(B,A) ).
fof(d1_waybel34,axiom,
! [A] :
( ( v2_orders_2(A)
& v3_orders_2(A)
& v4_orders_2(A)
& v1_lattice3(A)
& v2_lattice3(A)
& l1_orders_2(A) )
=> ! [B] :
( ( v2_orders_2(B)
& v3_orders_2(B)
& v4_orders_2(B)
& v1_lattice3(B)
& v2_lattice3(B)
& l1_orders_2(B) )
=> ! [C] :
( ( v1_funct_1(C)
& v1_funct_2(C,u1_struct_0(A),u1_struct_0(B))
& m2_relset_1(C,u1_struct_0(A),u1_struct_0(B)) )
=> ( ( v3_lattice3(A)
& v3_lattice3(B)
& v17_waybel_0(C,A,B) )
=> ! [D] :
( ( v1_funct_1(D)
& v1_funct_2(D,u1_struct_0(B),u1_struct_0(A))
& m2_relset_1(D,u1_struct_0(B),u1_struct_0(A)) )
=> ( D = k1_waybel34(A,B,C)
<=> v3_waybel_1(k1_waybel_1(A,B,C,D),A,B) ) ) ) ) ) ) ).
fof(d5_tarski,axiom,
! [A,B] : k4_tarski(A,B) = k2_tarski(k2_tarski(A,B),k1_tarski(A)) ).
fof(dt_k1_tarski,axiom,
$true ).
fof(dt_k1_waybel34,axiom,
! [A,B,C] :
( ( v2_orders_2(A)
& v3_orders_2(A)
& v4_orders_2(A)
& v1_lattice3(A)
& v2_lattice3(A)
& l1_orders_2(A)
& v2_orders_2(B)
& v3_orders_2(B)
& v4_orders_2(B)
& v1_lattice3(B)
& v2_lattice3(B)
& l1_orders_2(B)
& v1_funct_1(C)
& v1_funct_2(C,u1_struct_0(A),u1_struct_0(B))
& m1_relset_1(C,u1_struct_0(A),u1_struct_0(B)) )
=> ( v1_funct_1(k1_waybel34(A,B,C))
& v1_funct_2(k1_waybel34(A,B,C),u1_struct_0(B),u1_struct_0(A))
& m2_relset_1(k1_waybel34(A,B,C),u1_struct_0(B),u1_struct_0(A)) ) ) ).
fof(dt_k1_waybel_1,axiom,
! [A,B,C,D] :
( ( l1_orders_2(A)
& l1_orders_2(B)
& v1_funct_1(C)
& v1_funct_2(C,u1_struct_0(A),u1_struct_0(B))
& m1_relset_1(C,u1_struct_0(A),u1_struct_0(B))
& v1_funct_1(D)
& v1_funct_2(D,u1_struct_0(B),u1_struct_0(A))
& m1_relset_1(D,u1_struct_0(B),u1_struct_0(A)) )
=> m1_waybel_1(k1_waybel_1(A,B,C,D),A,B) ) ).
fof(dt_k1_xboole_0,axiom,
$true ).
fof(dt_k1_zfmisc_1,axiom,
$true ).
fof(dt_k2_tarski,axiom,
$true ).
fof(dt_k2_zfmisc_1,axiom,
$true ).
fof(dt_k4_tarski,axiom,
$true ).
fof(dt_k5_relat_1,axiom,
! [A,B] :
( ( v1_relat_1(A)
& v1_relat_1(B) )
=> v1_relat_1(k5_relat_1(A,B)) ) ).
fof(dt_k7_funct_2,axiom,
! [A,B,C,D,E] :
( ( ~ v1_xboole_0(B)
& v1_funct_1(D)
& v1_funct_2(D,A,B)
& m1_relset_1(D,A,B)
& v1_funct_1(E)
& v1_funct_2(E,B,C)
& m1_relset_1(E,B,C) )
=> ( v1_funct_1(k7_funct_2(A,B,C,D,E))
& v1_funct_2(k7_funct_2(A,B,C,D,E),A,C)
& m2_relset_1(k7_funct_2(A,B,C,D,E),A,C) ) ) ).
fof(dt_l1_orders_2,axiom,
! [A] :
( l1_orders_2(A)
=> l1_struct_0(A) ) ).
fof(dt_l1_struct_0,axiom,
$true ).
fof(dt_m1_relset_1,axiom,
$true ).
fof(dt_m1_subset_1,axiom,
$true ).
fof(dt_m1_waybel_1,axiom,
$true ).
fof(dt_m2_relset_1,axiom,
! [A,B,C] :
( m2_relset_1(C,A,B)
=> m1_subset_1(C,k1_zfmisc_1(k2_zfmisc_1(A,B))) ) ).
fof(dt_u1_struct_0,axiom,
$true ).
fof(existence_l1_orders_2,axiom,
? [A] : l1_orders_2(A) ).
fof(existence_l1_struct_0,axiom,
? [A] : l1_struct_0(A) ).
fof(existence_m1_relset_1,axiom,
! [A,B] :
? [C] : m1_relset_1(C,A,B) ).
fof(existence_m1_subset_1,axiom,
! [A] :
? [B] : m1_subset_1(B,A) ).
fof(existence_m1_waybel_1,axiom,
! [A,B] :
( ( l1_orders_2(A)
& l1_orders_2(B) )
=> ? [C] : m1_waybel_1(C,A,B) ) ).
fof(existence_m2_relset_1,axiom,
! [A,B] :
? [C] : m2_relset_1(C,A,B) ).
fof(fc10_membered,axiom,
! [A] :
( v1_int_1(A)
=> ( v1_membered(k1_tarski(A))
& v2_membered(k1_tarski(A))
& v3_membered(k1_tarski(A))
& v4_membered(k1_tarski(A)) ) ) ).
fof(fc11_membered,axiom,
! [A] :
( v4_ordinal2(A)
=> ( v1_membered(k1_tarski(A))
& v2_membered(k1_tarski(A))
& v3_membered(k1_tarski(A))
& v4_membered(k1_tarski(A))
& v5_membered(k1_tarski(A)) ) ) ).
fof(fc12_membered,axiom,
! [A,B] :
( ( v1_xcmplx_0(A)
& v1_xcmplx_0(B) )
=> v1_membered(k2_tarski(A,B)) ) ).
fof(fc13_membered,axiom,
! [A,B] :
( ( v1_xreal_0(A)
& v1_xreal_0(B) )
=> ( v1_membered(k2_tarski(A,B))
& v2_membered(k2_tarski(A,B)) ) ) ).
fof(fc14_finset_1,axiom,
! [A,B] :
( ( v1_finset_1(A)
& v1_finset_1(B) )
=> v1_finset_1(k2_zfmisc_1(A,B)) ) ).
fof(fc14_membered,axiom,
! [A,B] :
( ( v1_rat_1(A)
& v1_rat_1(B) )
=> ( v1_membered(k2_tarski(A,B))
& v2_membered(k2_tarski(A,B))
& v3_membered(k2_tarski(A,B)) ) ) ).
fof(fc15_membered,axiom,
! [A,B] :
( ( v1_int_1(A)
& v1_int_1(B) )
=> ( v1_membered(k2_tarski(A,B))
& v2_membered(k2_tarski(A,B))
& v3_membered(k2_tarski(A,B))
& v4_membered(k2_tarski(A,B)) ) ) ).
fof(fc16_membered,axiom,
! [A,B] :
( ( v4_ordinal2(A)
& v4_ordinal2(B) )
=> ( v1_membered(k2_tarski(A,B))
& v2_membered(k2_tarski(A,B))
& v3_membered(k2_tarski(A,B))
& v4_membered(k2_tarski(A,B))
& v5_membered(k2_tarski(A,B)) ) ) ).
fof(fc1_finset_1,axiom,
! [A] :
( ~ v1_xboole_0(k1_tarski(A))
& v1_finset_1(k1_tarski(A)) ) ).
fof(fc1_funct_1,axiom,
! [A,B] :
( ( v1_relat_1(A)
& v1_funct_1(A)
& v1_relat_1(B)
& v1_funct_1(B) )
=> ( v1_relat_1(k5_relat_1(A,B))
& v1_funct_1(k5_relat_1(A,B)) ) ) ).
fof(fc1_struct_0,axiom,
! [A] :
( ( ~ v3_struct_0(A)
& l1_struct_0(A) )
=> ~ v1_xboole_0(u1_struct_0(A)) ) ).
fof(fc1_waybel34,axiom,
! [A,B,C] :
( ( v2_orders_2(A)
& v3_orders_2(A)
& v4_orders_2(A)
& v1_lattice3(A)
& v2_lattice3(A)
& v3_lattice3(A)
& l1_orders_2(A)
& v2_orders_2(B)
& v3_orders_2(B)
& v4_orders_2(B)
& v1_lattice3(B)
& v2_lattice3(B)
& v3_lattice3(B)
& l1_orders_2(B)
& v1_funct_1(C)
& v1_funct_2(C,u1_struct_0(A),u1_struct_0(B))
& v17_waybel_0(C,A,B)
& m1_relset_1(C,u1_struct_0(A),u1_struct_0(B)) )
=> ( v1_relat_1(k1_waybel34(A,B,C))
& v1_funct_1(k1_waybel34(A,B,C))
& ~ v1_xboole_0(k1_waybel34(A,B,C))
& v1_funct_2(k1_waybel34(A,B,C),u1_struct_0(B),u1_struct_0(A))
& v1_partfun1(k1_waybel34(A,B,C),u1_struct_0(B),u1_struct_0(A))
& v18_waybel_0(k1_waybel34(A,B,C),B,A)
& v20_waybel_0(k1_waybel34(A,B,C),B,A)
& v22_waybel_0(k1_waybel34(A,B,C),B,A)
& v5_waybel_1(k1_waybel34(A,B,C),A,B)
& v5_orders_3(k1_waybel34(A,B,C),B,A) ) ) ).
fof(fc2_finset_1,axiom,
! [A,B] :
( ~ v1_xboole_0(k2_tarski(A,B))
& v1_finset_1(k2_tarski(A,B)) ) ).
fof(fc2_setfam_1,axiom,
! [A] :
( ~ v1_xboole_0(A)
=> ( ~ v1_xboole_0(k1_tarski(A))
& v1_setfam_1(k1_tarski(A)) ) ) ).
fof(fc3_setfam_1,axiom,
! [A,B] :
( ( ~ v1_xboole_0(A)
& ~ v1_xboole_0(B) )
=> ( ~ v1_xboole_0(k2_tarski(A,B))
& v1_setfam_1(k2_tarski(A,B)) ) ) ).
fof(fc6_membered,axiom,
( v1_xboole_0(k1_xboole_0)
& v1_membered(k1_xboole_0)
& v2_membered(k1_xboole_0)
& v3_membered(k1_xboole_0)
& v4_membered(k1_xboole_0)
& v5_membered(k1_xboole_0) ) ).
fof(fc7_membered,axiom,
! [A] :
( v1_xcmplx_0(A)
=> v1_membered(k1_tarski(A)) ) ).
fof(fc8_membered,axiom,
! [A] :
( v1_xreal_0(A)
=> ( v1_membered(k1_tarski(A))
& v2_membered(k1_tarski(A)) ) ) ).
fof(fc9_membered,axiom,
! [A] :
( v1_rat_1(A)
=> ( v1_membered(k1_tarski(A))
& v2_membered(k1_tarski(A))
& v3_membered(k1_tarski(A)) ) ) ).
fof(rc1_finset_1,axiom,
? [A] :
( ~ v1_xboole_0(A)
& v1_finset_1(A) ) ).
fof(rc1_funct_1,axiom,
? [A] :
( v1_relat_1(A)
& v1_funct_1(A) ) ).
fof(rc1_lattice5,axiom,
! [A,B] :
( ( v2_orders_2(A)
& v3_orders_2(A)
& v4_orders_2(A)
& v1_lattice3(A)
& v2_lattice3(A)
& l1_orders_2(A)
& v2_orders_2(B)
& v3_orders_2(B)
& v4_orders_2(B)
& v1_lattice3(B)
& v2_lattice3(B)
& l1_orders_2(B) )
=> ? [C] :
( m1_relset_1(C,u1_struct_0(A),u1_struct_0(B))
& v1_relat_1(C)
& v1_funct_1(C)
& v1_funct_2(C,u1_struct_0(A),u1_struct_0(B))
& v19_waybel_0(C,A,B)
& v20_waybel_0(C,A,B) ) ) ).
fof(rc1_membered,axiom,
? [A] :
( ~ v1_xboole_0(A)
& v1_membered(A)
& v2_membered(A)
& v3_membered(A)
& v4_membered(A)
& v5_membered(A) ) ).
fof(rc1_setfam_1,axiom,
? [A] :
( ~ v1_xboole_0(A)
& v1_setfam_1(A) ) ).
fof(rc1_waybel10,axiom,
! [A,B] :
( ( l1_orders_2(A)
& ~ v3_struct_0(B)
& v2_orders_2(B)
& l1_orders_2(B) )
=> ? [C] :
( m1_relset_1(C,u1_struct_0(A),u1_struct_0(B))
& v1_relat_1(C)
& v1_funct_1(C)
& v1_funct_2(C,u1_struct_0(A),u1_struct_0(B))
& v1_partfun1(C,u1_struct_0(A),u1_struct_0(B))
& v5_orders_3(C,A,B) ) ) ).
fof(rc1_waybel34,axiom,
! [A,B] :
( ( v2_orders_2(A)
& v3_orders_2(A)
& v4_orders_2(A)
& v1_lattice3(A)
& v2_lattice3(A)
& v3_lattice3(A)
& l1_orders_2(A)
& v2_orders_2(B)
& v3_orders_2(B)
& v4_orders_2(B)
& v1_lattice3(B)
& v2_lattice3(B)
& v3_lattice3(B)
& l1_orders_2(B) )
=> ? [C] :
( m1_waybel_1(C,A,B)
& v3_waybel_1(C,A,B) ) ) ).
fof(rc2_funct_1,axiom,
? [A] :
( v1_relat_1(A)
& v1_xboole_0(A)
& v1_funct_1(A) ) ).
fof(rc2_yellow_0,axiom,
? [A] :
( l1_orders_2(A)
& ~ v3_struct_0(A)
& v2_orders_2(A)
& v3_orders_2(A)
& v4_orders_2(A)
& v1_lattice3(A)
& v2_lattice3(A)
& v3_lattice3(A)
& v1_yellow_0(A)
& v2_yellow_0(A)
& v3_yellow_0(A) ) ).
fof(rc3_finset_1,axiom,
! [A] :
( ~ v1_xboole_0(A)
=> ? [B] :
( m1_subset_1(B,k1_zfmisc_1(A))
& ~ v1_xboole_0(B)
& v1_finset_1(B) ) ) ).
fof(rc3_funct_1,axiom,
? [A] :
( v1_relat_1(A)
& v1_funct_1(A)
& v2_funct_1(A) ) ).
fof(rc3_struct_0,axiom,
? [A] :
( l1_struct_0(A)
& ~ v3_struct_0(A) ) ).
fof(rc3_yellow_9,axiom,
! [A,B] :
( ( ~ v3_struct_0(A)
& l1_orders_2(A)
& ~ v3_struct_0(B)
& v2_orders_2(B)
& v4_orders_2(B)
& v2_yellow_0(B)
& l1_orders_2(B) )
=> ? [C] :
( m1_relset_1(C,u1_struct_0(A),u1_struct_0(B))
& v1_relat_1(C)
& v1_funct_1(C)
& ~ v1_xboole_0(C)
& v1_funct_2(C,u1_struct_0(A),u1_struct_0(B))
& v17_waybel_0(C,A,B)
& v19_waybel_0(C,A,B)
& v21_waybel_0(C,A,B)
& v1_partfun1(C,u1_struct_0(A),u1_struct_0(B)) ) ) ).
fof(rc4_finset_1,axiom,
! [A] :
( ~ v1_xboole_0(A)
=> ? [B] :
( m1_subset_1(B,k1_zfmisc_1(A))
& ~ v1_xboole_0(B)
& v1_finset_1(B) ) ) ).
fof(rc4_yellow_9,axiom,
! [A,B] :
( ( ~ v3_struct_0(A)
& l1_orders_2(A)
& ~ v3_struct_0(B)
& v2_orders_2(B)
& v4_orders_2(B)
& v1_yellow_0(B)
& l1_orders_2(B) )
=> ? [C] :
( m1_relset_1(C,u1_struct_0(A),u1_struct_0(B))
& v1_relat_1(C)
& v1_funct_1(C)
& ~ v1_xboole_0(C)
& v1_funct_2(C,u1_struct_0(A),u1_struct_0(B))
& v18_waybel_0(C,A,B)
& v20_waybel_0(C,A,B)
& v22_waybel_0(C,A,B)
& v1_partfun1(C,u1_struct_0(A),u1_struct_0(B)) ) ) ).
fof(rc5_struct_0,axiom,
! [A] :
( ( ~ v3_struct_0(A)
& l1_struct_0(A) )
=> ? [B] :
( m1_subset_1(B,k1_zfmisc_1(u1_struct_0(A)))
& ~ v1_xboole_0(B) ) ) ).
fof(redefinition_k1_waybel_1,axiom,
! [A,B,C,D] :
( ( l1_orders_2(A)
& l1_orders_2(B)
& v1_funct_1(C)
& v1_funct_2(C,u1_struct_0(A),u1_struct_0(B))
& m1_relset_1(C,u1_struct_0(A),u1_struct_0(B))
& v1_funct_1(D)
& v1_funct_2(D,u1_struct_0(B),u1_struct_0(A))
& m1_relset_1(D,u1_struct_0(B),u1_struct_0(A)) )
=> k1_waybel_1(A,B,C,D) = k4_tarski(C,D) ) ).
fof(redefinition_k7_funct_2,axiom,
! [A,B,C,D,E] :
( ( ~ v1_xboole_0(B)
& v1_funct_1(D)
& v1_funct_2(D,A,B)
& m1_relset_1(D,A,B)
& v1_funct_1(E)
& v1_funct_2(E,B,C)
& m1_relset_1(E,B,C) )
=> k7_funct_2(A,B,C,D,E) = k5_relat_1(D,E) ) ).
fof(redefinition_m2_relset_1,axiom,
! [A,B,C] :
( m2_relset_1(C,A,B)
<=> m1_relset_1(C,A,B) ) ).
fof(reflexivity_r1_tarski,axiom,
! [A,B] : r1_tarski(A,A) ).
fof(t1_subset,axiom,
! [A,B] :
( r2_hidden(A,B)
=> m1_subset_1(A,B) ) ).
fof(t26_waybel20,axiom,
! [A] :
( ( ~ v3_struct_0(A)
& l1_orders_2(A) )
=> ! [B] :
( ( ~ v3_struct_0(B)
& l1_orders_2(B) )
=> ! [C] :
( ( ~ v3_struct_0(C)
& l1_orders_2(C) )
=> ! [D] :
( ( v1_funct_1(D)
& v1_funct_2(D,u1_struct_0(A),u1_struct_0(B))
& m2_relset_1(D,u1_struct_0(A),u1_struct_0(B)) )
=> ! [E] :
( ( v1_funct_1(E)
& v1_funct_2(E,u1_struct_0(B),u1_struct_0(C))
& m2_relset_1(E,u1_struct_0(B),u1_struct_0(C)) )
=> ( ( v17_waybel_0(D,A,B)
& v17_waybel_0(E,B,C) )
=> v17_waybel_0(k7_funct_2(u1_struct_0(A),u1_struct_0(B),u1_struct_0(C),D,E),A,C) ) ) ) ) ) ) ).
fof(t2_subset,axiom,
! [A,B] :
( m1_subset_1(A,B)
=> ( v1_xboole_0(B)
| r2_hidden(A,B) ) ) ).
fof(t3_subset,axiom,
! [A,B] :
( m1_subset_1(A,k1_zfmisc_1(B))
<=> r1_tarski(A,B) ) ).
fof(t4_subset,axiom,
! [A,B,C] :
( ( r2_hidden(A,B)
& m1_subset_1(B,k1_zfmisc_1(C)) )
=> m1_subset_1(A,C) ) ).
fof(t5_subset,axiom,
! [A,B,C] :
~ ( r2_hidden(A,B)
& m1_subset_1(B,k1_zfmisc_1(C))
& v1_xboole_0(C) ) ).
fof(t6_boole,axiom,
! [A] :
( v1_xboole_0(A)
=> A = k1_xboole_0 ) ).
fof(t7_boole,axiom,
! [A,B] :
~ ( r2_hidden(A,B)
& v1_xboole_0(B) ) ).
fof(t7_waybel15,axiom,
! [A] :
( ( ~ v3_struct_0(A)
& v2_orders_2(A)
& v3_orders_2(A)
& v4_orders_2(A)
& l1_orders_2(A) )
=> ! [B] :
( ( ~ v3_struct_0(B)
& v2_orders_2(B)
& v3_orders_2(B)
& v4_orders_2(B)
& l1_orders_2(B) )
=> ! [C] :
( ( ~ v3_struct_0(C)
& v2_orders_2(C)
& v3_orders_2(C)
& v4_orders_2(C)
& l1_orders_2(C) )
=> ! [D] :
( ( v1_funct_1(D)
& v1_funct_2(D,u1_struct_0(A),u1_struct_0(B))
& m2_relset_1(D,u1_struct_0(A),u1_struct_0(B)) )
=> ! [E] :
( ( v1_funct_1(E)
& v1_funct_2(E,u1_struct_0(B),u1_struct_0(C))
& m2_relset_1(E,u1_struct_0(B),u1_struct_0(C)) )
=> ! [F] :
( ( v1_funct_1(F)
& v1_funct_2(F,u1_struct_0(B),u1_struct_0(A))
& m2_relset_1(F,u1_struct_0(B),u1_struct_0(A)) )
=> ! [G] :
( ( v1_funct_1(G)
& v1_funct_2(G,u1_struct_0(C),u1_struct_0(B))
& m2_relset_1(G,u1_struct_0(C),u1_struct_0(B)) )
=> ( ( v3_waybel_1(k1_waybel_1(A,B,D,F),A,B)
& v3_waybel_1(k1_waybel_1(B,C,E,G),B,C) )
=> v3_waybel_1(k1_waybel_1(A,C,k7_funct_2(u1_struct_0(A),u1_struct_0(B),u1_struct_0(C),D,E),k7_funct_2(u1_struct_0(C),u1_struct_0(B),u1_struct_0(A),G,F)),A,C) ) ) ) ) ) ) ) ) ).
fof(t8_boole,axiom,
! [A,B] :
~ ( v1_xboole_0(A)
& A != B
& v1_xboole_0(B) ) ).
%------------------------------------------------------------------------------