TPTP Problem File: LAT348+1.p

View Solutions - Solve Problem

%------------------------------------------------------------------------------
% File     : LAT348+1 : TPTP v9.0.0. Released v3.4.0.
% Domain   : Lattice Theory
% Problem  : Representation Theorem for Free Continuous Lattices T06
% Version  : [Urb08] axioms : Especial.
% English  :

% Refs     : [Rud96] Rudnicki (1998), Representation Theorem for Free Conti
%          : [Urb07] Urban (2007), MPTP 0.2: Design, Implementation, and In
%          : [Urb08] Urban (2006), Email to G. Sutcliffe
% Source   : [Urb08]
% Names    : t6_waybel22 [Urb08]

% Status   : Theorem
% Rating   : 1.00 v3.4.0
% Syntax   : Number of formulae    :  192 (  41 unt;   0 def)
%            Number of atoms       :  918 (  48 equ)
%            Maximal formula atoms :   21 (   4 avg)
%            Number of connectives :  857 ( 131   ~;   2   |; 498   &)
%                                         (  25 <=>; 201  =>;   0  <=;   0 <~>)
%            Maximal formula depth :   22 (   6 avg)
%            Maximal term depth    :    4 (   1 avg)
%            Number of predicates  :   57 (  55 usr;   1 prp; 0-3 aty)
%            Number of functors    :   29 (  29 usr;   1 con; 0-3 aty)
%            Number of variables   :  316 ( 280   !;  36   ?)
% SPC      : FOF_THM_RFO_SEQ

% Comments : Normal version: includes the axioms (which may be theorems from
%            other articles) and background that are possibly necessary.
%          : Translated by MPTP from the Mizar Mathematical Library 4.48.930.
%          : The problem encoding is based on set theory.
%------------------------------------------------------------------------------
fof(t6_waybel22,conjecture,
    ! [A] :
      ( ( ~ v3_struct_0(A)
        & v2_orders_2(A)
        & v3_orders_2(A)
        & v4_orders_2(A)
        & v2_yellow_0(A)
        & v2_lattice3(A)
        & l1_orders_2(A) )
     => ( ~ v3_struct_0(k2_yellow_1(k9_waybel_0(A)))
        & v4_yellow_0(k2_yellow_1(k9_waybel_0(A)),k3_yellow_1(u1_struct_0(A)))
        & v7_yellow_0(k2_yellow_1(k9_waybel_0(A)),k3_yellow_1(u1_struct_0(A)))
        & v4_waybel_0(k2_yellow_1(k9_waybel_0(A)),k3_yellow_1(u1_struct_0(A)))
        & m1_yellow_0(k2_yellow_1(k9_waybel_0(A)),k3_yellow_1(u1_struct_0(A))) ) ) ).

fof(abstractness_v1_orders_2,axiom,
    ! [A] :
      ( l1_orders_2(A)
     => ( v1_orders_2(A)
       => A = g1_orders_2(u1_struct_0(A),u1_orders_2(A)) ) ) ).

fof(antisymmetry_r2_hidden,axiom,
    ! [A,B] :
      ( r2_hidden(A,B)
     => ~ r2_hidden(B,A) ) ).

fof(cc10_waybel_0,axiom,
    ! [A] :
      ( l1_orders_2(A)
     => ( ( ~ v3_struct_0(A)
          & v2_orders_2(A)
          & v3_lattice3(A) )
       => ( ~ v3_struct_0(A)
          & v2_orders_2(A)
          & v24_waybel_0(A)
          & v25_waybel_0(A) ) ) ) ).

fof(cc11_waybel_0,axiom,
    ! [A] :
      ( l1_orders_2(A)
     => ( ( ~ v3_struct_0(A)
          & v2_orders_2(A)
          & v25_waybel_0(A) )
       => ( ~ v3_struct_0(A)
          & v2_orders_2(A)
          & v1_yellow_0(A) ) ) ) ).

fof(cc11_yellow_0,axiom,
    ! [A] :
      ( ( v3_orders_2(A)
        & v4_orders_2(A)
        & v2_lattice3(A)
        & l1_orders_2(A) )
     => ! [B] :
          ( m1_yellow_0(B,A)
         => ( ( ~ v3_struct_0(B)
              & v4_yellow_0(B,A)
              & v5_yellow_0(B,A) )
           => ( ~ v3_struct_0(B)
              & v3_orders_2(B)
              & v4_orders_2(B)
              & v2_lattice3(B)
              & v4_yellow_0(B,A)
              & v5_yellow_0(B,A) ) ) ) ) ).

fof(cc12_waybel_0,axiom,
    ! [A] :
      ( l1_orders_2(A)
     => ( ( ~ v3_struct_0(A)
          & v2_orders_2(A)
          & v3_orders_2(A)
          & v4_orders_2(A)
          & v1_lattice3(A)
          & v1_yellow_0(A)
          & v24_waybel_0(A) )
       => ( ~ v3_struct_0(A)
          & v2_orders_2(A)
          & v3_orders_2(A)
          & v4_orders_2(A)
          & v1_lattice3(A)
          & v2_lattice3(A)
          & v3_lattice3(A)
          & v1_yellow_0(A)
          & v2_yellow_0(A)
          & v3_yellow_0(A) ) ) ) ).

fof(cc13_waybel_0,axiom,
    ! [A] :
      ( l1_orders_2(A)
     => ( ( ~ v3_struct_0(A)
          & v2_orders_2(A)
          & v4_orders_2(A)
          & v25_waybel_0(A) )
       => ( ~ v3_struct_0(A)
          & v2_orders_2(A)
          & v4_orders_2(A)
          & v2_lattice3(A) ) ) ) ).

fof(cc14_waybel_0,axiom,
    ! [A] :
      ( l1_orders_2(A)
     => ( ( ~ v3_struct_0(A)
          & v2_orders_2(A)
          & v4_orders_2(A)
          & v2_yellow_0(A)
          & v25_waybel_0(A) )
       => ( ~ v3_struct_0(A)
          & v2_orders_2(A)
          & v4_orders_2(A)
          & v1_lattice3(A)
          & v2_yellow_0(A) ) ) ) ).

fof(cc1_funct_1,axiom,
    ! [A] :
      ( v1_xboole_0(A)
     => v1_funct_1(A) ) ).

fof(cc1_lattice3,axiom,
    ! [A] :
      ( l1_orders_2(A)
     => ( v1_lattice3(A)
       => ~ v3_struct_0(A) ) ) ).

fof(cc1_relset_1,axiom,
    ! [A,B,C] :
      ( m1_subset_1(C,k1_zfmisc_1(k2_zfmisc_1(A,B)))
     => v1_relat_1(C) ) ).

fof(cc1_setfam_1,axiom,
    ! [A] :
      ( ( ~ v1_xboole_0(A)
        & v1_setfam_1(A) )
     => ! [B] :
          ( m1_subset_1(B,A)
         => ~ v1_xboole_0(B) ) ) ).

fof(cc1_waybel_0,axiom,
    ! [A] :
      ( ( ~ v3_struct_0(A)
        & l1_orders_2(A) )
     => ! [B] :
          ( m1_yellow_0(B,A)
         => ( v7_yellow_0(B,A)
           => v3_waybel_0(B,A) ) ) ) ).

fof(cc1_waybel_8,axiom,
    ! [A] :
      ( l1_orders_2(A)
     => ( ( v2_orders_2(A)
          & v3_orders_2(A)
          & v4_orders_2(A)
          & v1_lattice3(A)
          & v2_lattice3(A)
          & v2_waybel_8(A) )
       => ( ~ v3_struct_0(A)
          & v2_orders_2(A)
          & v3_orders_2(A)
          & v4_orders_2(A)
          & v1_lattice3(A)
          & v2_lattice3(A)
          & v2_yellow_0(A)
          & v24_waybel_0(A)
          & v2_waybel_3(A)
          & v3_waybel_3(A) ) ) ) ).

fof(cc1_yellow_0,axiom,
    ! [A] :
      ( l1_orders_2(A)
     => ( ( ~ v3_struct_0(A)
          & v3_lattice3(A) )
       => ( ~ v3_struct_0(A)
          & v1_lattice3(A)
          & v2_lattice3(A) ) ) ) ).

fof(cc1_yellow_7,axiom,
    ! [A] :
      ( l1_orders_2(A)
     => ( ( ~ v3_struct_0(A)
          & v1_waybel_5(A) )
       => ( ~ v3_struct_0(A)
          & v1_lattice3(A)
          & v2_lattice3(A)
          & v3_lattice3(A)
          & v1_yellow_0(A)
          & v2_yellow_0(A)
          & v3_yellow_0(A) ) ) ) ).

fof(cc2_funct_1,axiom,
    ! [A] :
      ( ( v1_relat_1(A)
        & v1_xboole_0(A)
        & v1_funct_1(A) )
     => ( v1_relat_1(A)
        & v1_funct_1(A)
        & v2_funct_1(A) ) ) ).

fof(cc2_lattice3,axiom,
    ! [A] :
      ( l1_orders_2(A)
     => ( v2_lattice3(A)
       => ~ v3_struct_0(A) ) ) ).

fof(cc2_waybel_5,axiom,
    ! [A] :
      ( l1_orders_2(A)
     => ( ( ~ v3_struct_0(A)
          & v2_orders_2(A)
          & v3_orders_2(A)
          & v4_orders_2(A)
          & v3_realset2(A) )
       => ( ~ v3_struct_0(A)
          & v2_orders_2(A)
          & v3_orders_2(A)
          & v4_orders_2(A)
          & v1_waybel_5(A) ) ) ) ).

fof(cc2_waybel_8,axiom,
    ! [A] :
      ( l1_orders_2(A)
     => ( ( ~ v3_struct_0(A)
          & v2_orders_2(A)
          & v2_waybel_8(A) )
       => ( ~ v3_struct_0(A)
          & v2_orders_2(A)
          & v24_waybel_0(A)
          & v1_waybel_8(A) ) ) ) ).

fof(cc2_yellow_0,axiom,
    ! [A] :
      ( l1_orders_2(A)
     => ( ( ~ v3_struct_0(A)
          & v2_orders_2(A)
          & v3_realset2(A) )
       => ( ~ v3_struct_0(A)
          & v2_orders_2(A)
          & v3_orders_2(A)
          & v4_orders_2(A)
          & v3_lattice3(A) ) ) ) ).

fof(cc3_waybel_5,axiom,
    ! [A] :
      ( l1_orders_2(A)
     => ( ( v2_orders_2(A)
          & v3_orders_2(A)
          & v4_orders_2(A)
          & v1_lattice3(A)
          & v2_lattice3(A)
          & v1_waybel_5(A) )
       => ( ~ v3_struct_0(A)
          & v2_orders_2(A)
          & v3_orders_2(A)
          & v4_orders_2(A)
          & v1_lattice3(A)
          & v2_lattice3(A)
          & v3_lattice3(A)
          & v1_yellow_0(A)
          & v2_yellow_0(A)
          & v3_yellow_0(A)
          & v24_waybel_0(A)
          & v25_waybel_0(A)
          & v2_waybel_3(A)
          & v3_waybel_3(A) ) ) ) ).

fof(cc3_waybel_8,axiom,
    ! [A] :
      ( l1_orders_2(A)
     => ( ( v2_orders_2(A)
          & v3_orders_2(A)
          & v4_orders_2(A)
          & v1_lattice3(A)
          & v2_lattice3(A)
          & v3_waybel_8(A) )
       => ( ~ v3_struct_0(A)
          & v2_orders_2(A)
          & v3_orders_2(A)
          & v4_orders_2(A)
          & v1_lattice3(A)
          & v2_lattice3(A)
          & v2_yellow_0(A)
          & v24_waybel_0(A)
          & v2_waybel_3(A)
          & v3_waybel_3(A)
          & v1_waybel_8(A)
          & v2_waybel_8(A) ) ) ) ).

fof(cc3_yellow_0,axiom,
    ! [A] :
      ( l1_orders_2(A)
     => ( ( ~ v3_struct_0(A)
          & v3_lattice3(A) )
       => ( ~ v3_struct_0(A)
          & v3_yellow_0(A) ) ) ) ).

fof(cc4_waybel_5,axiom,
    ! [A] :
      ( l1_orders_2(A)
     => ( ( v2_orders_2(A)
          & v3_orders_2(A)
          & v4_orders_2(A)
          & v1_lattice3(A)
          & v2_lattice3(A)
          & v1_waybel_5(A) )
       => ( ~ v3_struct_0(A)
          & v2_orders_2(A)
          & v3_orders_2(A)
          & v4_orders_2(A)
          & v1_lattice3(A)
          & v2_lattice3(A)
          & v9_waybel_1(A) ) ) ) ).

fof(cc4_waybel_8,axiom,
    ! [A] :
      ( l1_orders_2(A)
     => ( ( v2_orders_2(A)
          & v3_orders_2(A)
          & v4_orders_2(A)
          & v1_lattice3(A)
          & v2_lattice3(A)
          & v3_realset2(A) )
       => ( ~ v3_struct_0(A)
          & v2_orders_2(A)
          & v3_orders_2(A)
          & v4_orders_2(A)
          & v1_lattice3(A)
          & v2_lattice3(A)
          & v2_yellow_0(A)
          & v24_waybel_0(A)
          & v2_waybel_3(A)
          & v3_waybel_3(A)
          & v1_waybel_8(A)
          & v2_waybel_8(A)
          & v3_waybel_8(A) ) ) ) ).

fof(cc4_yellow_0,axiom,
    ! [A] :
      ( l1_orders_2(A)
     => ( v3_yellow_0(A)
       => ( v1_yellow_0(A)
          & v2_yellow_0(A) ) ) ) ).

fof(cc5_waybel_0,axiom,
    ! [A] :
      ( l1_orders_2(A)
     => ( ( ~ v3_struct_0(A)
          & v2_orders_2(A)
          & v3_realset2(A) )
       => ( ~ v3_struct_0(A)
          & v2_orders_2(A)
          & v16_waybel_0(A) ) ) ) ).

fof(cc5_yellow_0,axiom,
    ! [A] :
      ( l1_orders_2(A)
     => ( ( v1_yellow_0(A)
          & v2_yellow_0(A) )
       => v3_yellow_0(A) ) ) ).

fof(cc6_yellow_0,axiom,
    ! [A] :
      ( ( v2_orders_2(A)
        & l1_orders_2(A) )
     => ! [B] :
          ( m1_yellow_0(B,A)
         => ( v4_yellow_0(B,A)
           => ( v2_orders_2(B)
              & v4_yellow_0(B,A) ) ) ) ) ).

fof(cc7_yellow_0,axiom,
    ! [A] :
      ( ( v3_orders_2(A)
        & l1_orders_2(A) )
     => ! [B] :
          ( m1_yellow_0(B,A)
         => ( v4_yellow_0(B,A)
           => ( v3_orders_2(B)
              & v4_yellow_0(B,A) ) ) ) ) ).

fof(cc8_yellow_0,axiom,
    ! [A] :
      ( ( v4_orders_2(A)
        & l1_orders_2(A) )
     => ! [B] :
          ( m1_yellow_0(B,A)
         => ( v4_yellow_0(B,A)
           => ( v4_orders_2(B)
              & v4_yellow_0(B,A) ) ) ) ) ).

fof(cc9_waybel_0,axiom,
    ! [A] :
      ( l1_orders_2(A)
     => ( ( v2_orders_2(A)
          & v1_lattice3(A)
          & v24_waybel_0(A) )
       => ( ~ v3_struct_0(A)
          & v2_orders_2(A)
          & v1_lattice3(A)
          & v2_yellow_0(A) ) ) ) ).

fof(cc9_yellow_0,axiom,
    ! [A] :
      ( ( ~ v3_struct_0(A)
        & l1_orders_2(A) )
     => ! [B] :
          ( m1_yellow_0(B,A)
         => ( v7_yellow_0(B,A)
           => v5_yellow_0(B,A) ) ) ) ).

fof(commutativity_k2_tarski,axiom,
    ! [A,B] : k2_tarski(A,B) = k2_tarski(B,A) ).

fof(commutativity_k2_xboole_0,axiom,
    ! [A,B] : k2_xboole_0(A,B) = k2_xboole_0(B,A) ).

fof(commutativity_k3_xboole_0,axiom,
    ! [A,B] : k3_xboole_0(A,B) = k3_xboole_0(B,A) ).

fof(commutativity_k4_subset_1,axiom,
    ! [A,B,C] :
      ( ( m1_subset_1(B,k1_zfmisc_1(A))
        & m1_subset_1(C,k1_zfmisc_1(A)) )
     => k4_subset_1(A,B,C) = k4_subset_1(A,C,B) ) ).

fof(d12_yellow_0,axiom,
    ! [A] :
      ( l1_orders_2(A)
     => k4_yellow_0(A) = k2_yellow_0(A,k1_xboole_0) ) ).

fof(d13_yellow_0,axiom,
    ! [A] :
      ( l1_orders_2(A)
     => ! [B] :
          ( l1_orders_2(B)
         => ( m1_yellow_0(B,A)
          <=> ( r1_tarski(u1_struct_0(B),u1_struct_0(A))
              & r1_tarski(u1_orders_2(B),u1_orders_2(A)) ) ) ) ) ).

fof(d14_yellow_0,axiom,
    ! [A] :
      ( l1_orders_2(A)
     => ! [B] :
          ( m1_yellow_0(B,A)
         => ( v4_yellow_0(B,A)
          <=> u1_orders_2(B) = k1_toler_1(u1_orders_2(A),u1_struct_0(B)) ) ) ) ).

fof(d18_yellow_0,axiom,
    ! [A] :
      ( ( ~ v3_struct_0(A)
        & l1_orders_2(A) )
     => ! [B] :
          ( m1_yellow_0(B,A)
         => ( v7_yellow_0(B,A)
          <=> ! [C] :
                ( m1_subset_1(C,k1_zfmisc_1(u1_struct_0(B)))
               => ( r2_yellow_0(A,C)
                 => r2_hidden(k2_yellow_0(A,C),u1_struct_0(B)) ) ) ) ) ) ).

fof(d1_relat_1,axiom,
    ! [A] :
      ( v1_relat_1(A)
    <=> ! [B] :
          ~ ( r2_hidden(B,A)
            & ! [C,D] : B != k4_tarski(C,D) ) ) ).

fof(d1_setfam_1,axiom,
    ! [A,B] :
      ( ( A != k1_xboole_0
       => ( B = k1_setfam_1(A)
        <=> ! [C] :
              ( r2_hidden(C,B)
            <=> ! [D] :
                  ( r2_hidden(D,A)
                 => r2_hidden(C,D) ) ) ) )
      & ( A = k1_xboole_0
       => ( B = k1_setfam_1(A)
        <=> B = k1_xboole_0 ) ) ) ).

fof(d1_waybel_0,axiom,
    ! [A] :
      ( l1_orders_2(A)
     => ! [B] :
          ( m1_subset_1(B,k1_zfmisc_1(u1_struct_0(A)))
         => ( v1_waybel_0(B,A)
          <=> ! [C] :
                ( m1_subset_1(C,u1_struct_0(A))
               => ! [D] :
                    ( m1_subset_1(D,u1_struct_0(A))
                   => ~ ( r2_hidden(C,B)
                        & r2_hidden(D,B)
                        & ! [E] :
                            ( m1_subset_1(E,u1_struct_0(A))
                           => ~ ( r2_hidden(E,B)
                                & r1_orders_2(A,C,E)
                                & r1_orders_2(A,D,E) ) ) ) ) ) ) ) ) ).

fof(d1_wellord2,axiom,
    ! [A,B] :
      ( v1_relat_1(B)
     => ( B = k1_wellord2(A)
      <=> ( k3_relat_1(B) = A
          & ! [C,D] :
              ( ( r2_hidden(C,A)
                & r2_hidden(D,A) )
             => ( r2_hidden(k4_tarski(C,D),B)
              <=> r1_tarski(C,D) ) ) ) ) ) ).

fof(d1_xboole_0,axiom,
    ! [A] :
      ( A = k1_xboole_0
    <=> ! [B] : ~ r2_hidden(B,A) ) ).

fof(d1_yellow_1,axiom,
    ! [A] : k2_yellow_1(A) = g1_orders_2(A,k1_yellow_1(A)) ).

fof(d24_waybel_0,axiom,
    ! [A] :
      ( ( ~ v3_struct_0(A)
        & v2_orders_2(A)
        & v3_orders_2(A)
        & l1_orders_2(A) )
     => k9_waybel_0(A) = a_1_1_waybel_0(A) ) ).

fof(d2_zfmisc_1,axiom,
    ! [A,B,C] :
      ( C = k2_zfmisc_1(A,B)
    <=> ! [D] :
          ( r2_hidden(D,C)
        <=> ? [E,F] :
              ( r2_hidden(E,A)
              & r2_hidden(F,B)
              & D = k4_tarski(E,F) ) ) ) ).

fof(d3_tarski,axiom,
    ! [A,B] :
      ( r1_tarski(A,B)
    <=> ! [C] :
          ( r2_hidden(C,A)
         => r2_hidden(C,B) ) ) ).

fof(d3_xboole_0,axiom,
    ! [A,B,C] :
      ( C = k3_xboole_0(A,B)
    <=> ! [D] :
          ( r2_hidden(D,C)
        <=> ( r2_hidden(D,A)
            & r2_hidden(D,B) ) ) ) ).

fof(d4_tarski,axiom,
    ! [A,B] :
      ( B = k3_tarski(A)
    <=> ! [C] :
          ( r2_hidden(C,B)
        <=> ? [D] :
              ( r2_hidden(C,D)
              & r2_hidden(D,A) ) ) ) ).

fof(d4_waybel_0,axiom,
    ! [A] :
      ( ( ~ v3_struct_0(A)
        & l1_orders_2(A) )
     => ! [B] :
          ( m1_yellow_0(B,A)
         => ( v4_waybel_0(B,A)
          <=> ! [C] :
                ( ( v1_waybel_0(C,B)
                  & m1_subset_1(C,k1_zfmisc_1(u1_struct_0(B))) )
               => ( r1_yellow_0(A,C)
                 => ( C = k1_xboole_0
                    | r2_hidden(k1_yellow_0(A,C),u1_struct_0(B)) ) ) ) ) ) ) ).

fof(d5_tarski,axiom,
    ! [A,B] : k4_tarski(A,B) = k2_tarski(k2_tarski(A,B),k1_tarski(A)) ).

fof(d6_wellord1,axiom,
    ! [A] :
      ( v1_relat_1(A)
     => ! [B] : k2_wellord1(A,B) = k3_xboole_0(A,k2_zfmisc_1(B,B)) ) ).

fof(dt_g1_orders_2,axiom,
    ! [A,B] :
      ( m1_relset_1(B,A,A)
     => ( v1_orders_2(g1_orders_2(A,B))
        & l1_orders_2(g1_orders_2(A,B)) ) ) ).

fof(dt_k1_setfam_1,axiom,
    $true ).

fof(dt_k1_tarski,axiom,
    $true ).

fof(dt_k1_toler_1,axiom,
    ! [A,B] :
      ( v1_relat_1(A)
     => m2_relset_1(k1_toler_1(A,B),B,B) ) ).

fof(dt_k1_wellord2,axiom,
    ! [A] : v1_relat_1(k1_wellord2(A)) ).

fof(dt_k1_xboole_0,axiom,
    $true ).

fof(dt_k1_yellow_0,axiom,
    ! [A,B] :
      ( l1_orders_2(A)
     => m1_subset_1(k1_yellow_0(A,B),u1_struct_0(A)) ) ).

fof(dt_k1_yellow_1,axiom,
    ! [A] :
      ( v1_relat_2(k1_yellow_1(A))
      & v4_relat_2(k1_yellow_1(A))
      & v8_relat_2(k1_yellow_1(A))
      & v1_partfun1(k1_yellow_1(A),A,A)
      & m2_relset_1(k1_yellow_1(A),A,A) ) ).

fof(dt_k1_zfmisc_1,axiom,
    $true ).

fof(dt_k2_pre_topc,axiom,
    ! [A] :
      ( l1_struct_0(A)
     => m1_subset_1(k2_pre_topc(A),k1_zfmisc_1(u1_struct_0(A))) ) ).

fof(dt_k2_tarski,axiom,
    $true ).

fof(dt_k2_wellord1,axiom,
    ! [A,B] :
      ( v1_relat_1(A)
     => v1_relat_1(k2_wellord1(A,B)) ) ).

fof(dt_k2_xboole_0,axiom,
    $true ).

fof(dt_k2_yellow_0,axiom,
    ! [A,B] :
      ( l1_orders_2(A)
     => m1_subset_1(k2_yellow_0(A,B),u1_struct_0(A)) ) ).

fof(dt_k2_yellow_1,axiom,
    ! [A] :
      ( v1_orders_2(k2_yellow_1(A))
      & l1_orders_2(k2_yellow_1(A)) ) ).

fof(dt_k2_zfmisc_1,axiom,
    $true ).

fof(dt_k3_relat_1,axiom,
    $true ).

fof(dt_k3_tarski,axiom,
    $true ).

fof(dt_k3_xboole_0,axiom,
    $true ).

fof(dt_k3_yellow_1,axiom,
    ! [A] :
      ( v1_orders_2(k3_yellow_1(A))
      & l1_orders_2(k3_yellow_1(A)) ) ).

fof(dt_k4_subset_1,axiom,
    ! [A,B,C] :
      ( ( m1_subset_1(B,k1_zfmisc_1(A))
        & m1_subset_1(C,k1_zfmisc_1(A)) )
     => m1_subset_1(k4_subset_1(A,B,C),k1_zfmisc_1(A)) ) ).

fof(dt_k4_tarski,axiom,
    $true ).

fof(dt_k4_yellow_0,axiom,
    ! [A] :
      ( l1_orders_2(A)
     => m1_subset_1(k4_yellow_0(A),u1_struct_0(A)) ) ).

fof(dt_k5_setfam_1,axiom,
    ! [A,B] :
      ( m1_subset_1(B,k1_zfmisc_1(k1_zfmisc_1(A)))
     => m1_subset_1(k5_setfam_1(A,B),k1_zfmisc_1(A)) ) ).

fof(dt_k6_setfam_1,axiom,
    ! [A,B] :
      ( m1_subset_1(B,k1_zfmisc_1(k1_zfmisc_1(A)))
     => m1_subset_1(k6_setfam_1(A,B),k1_zfmisc_1(A)) ) ).

fof(dt_k9_waybel_0,axiom,
    $true ).

fof(dt_l1_orders_2,axiom,
    ! [A] :
      ( l1_orders_2(A)
     => l1_struct_0(A) ) ).

fof(dt_l1_struct_0,axiom,
    $true ).

fof(dt_m1_relset_1,axiom,
    $true ).

fof(dt_m1_subset_1,axiom,
    $true ).

fof(dt_m1_yellow_0,axiom,
    ! [A] :
      ( l1_orders_2(A)
     => ! [B] :
          ( m1_yellow_0(B,A)
         => l1_orders_2(B) ) ) ).

fof(dt_m2_relset_1,axiom,
    ! [A,B,C] :
      ( m2_relset_1(C,A,B)
     => m1_subset_1(C,k1_zfmisc_1(k2_zfmisc_1(A,B))) ) ).

fof(dt_u1_orders_2,axiom,
    ! [A] :
      ( l1_orders_2(A)
     => m2_relset_1(u1_orders_2(A),u1_struct_0(A),u1_struct_0(A)) ) ).

fof(dt_u1_struct_0,axiom,
    $true ).

fof(existence_l1_orders_2,axiom,
    ? [A] : l1_orders_2(A) ).

fof(existence_l1_struct_0,axiom,
    ? [A] : l1_struct_0(A) ).

fof(existence_m1_relset_1,axiom,
    ! [A,B] :
    ? [C] : m1_relset_1(C,A,B) ).

fof(existence_m1_subset_1,axiom,
    ! [A] :
    ? [B] : m1_subset_1(B,A) ).

fof(existence_m1_yellow_0,axiom,
    ! [A] :
      ( l1_orders_2(A)
     => ? [B] : m1_yellow_0(B,A) ) ).

fof(existence_m2_relset_1,axiom,
    ! [A,B] :
    ? [C] : m2_relset_1(C,A,B) ).

fof(fc10_waybel_8,axiom,
    ! [A] :
      ( ( ~ v3_struct_0(A)
        & v2_orders_2(A)
        & v24_waybel_0(A)
        & l1_orders_2(A) )
     => ( ~ v3_struct_0(g1_orders_2(u1_struct_0(A),u1_orders_2(A)))
        & v1_orders_2(g1_orders_2(u1_struct_0(A),u1_orders_2(A)))
        & v2_orders_2(g1_orders_2(u1_struct_0(A),u1_orders_2(A)))
        & v24_waybel_0(g1_orders_2(u1_struct_0(A),u1_orders_2(A))) ) ) ).

fof(fc11_waybel_8,axiom,
    ! [A] :
      ( ( ~ v3_struct_0(A)
        & v2_orders_2(A)
        & v4_orders_2(A)
        & v2_waybel_8(A)
        & l1_orders_2(A) )
     => ( ~ v3_struct_0(g1_orders_2(u1_struct_0(A),u1_orders_2(A)))
        & v1_orders_2(g1_orders_2(u1_struct_0(A),u1_orders_2(A)))
        & v2_orders_2(g1_orders_2(u1_struct_0(A),u1_orders_2(A)))
        & v4_orders_2(g1_orders_2(u1_struct_0(A),u1_orders_2(A)))
        & v24_waybel_0(g1_orders_2(u1_struct_0(A),u1_orders_2(A)))
        & v1_waybel_8(g1_orders_2(u1_struct_0(A),u1_orders_2(A)))
        & v2_waybel_8(g1_orders_2(u1_struct_0(A),u1_orders_2(A))) ) ) ).

fof(fc12_waybel_8,axiom,
    ! [A] :
      ( ( v2_orders_2(A)
        & v3_orders_2(A)
        & v4_orders_2(A)
        & v1_lattice3(A)
        & v2_lattice3(A)
        & v3_waybel_8(A)
        & l1_orders_2(A) )
     => ( ~ v3_struct_0(g1_orders_2(u1_struct_0(A),u1_orders_2(A)))
        & v1_orders_2(g1_orders_2(u1_struct_0(A),u1_orders_2(A)))
        & v2_orders_2(g1_orders_2(u1_struct_0(A),u1_orders_2(A)))
        & v3_orders_2(g1_orders_2(u1_struct_0(A),u1_orders_2(A)))
        & v4_orders_2(g1_orders_2(u1_struct_0(A),u1_orders_2(A)))
        & v1_lattice3(g1_orders_2(u1_struct_0(A),u1_orders_2(A)))
        & v2_lattice3(g1_orders_2(u1_struct_0(A),u1_orders_2(A)))
        & v2_yellow_0(g1_orders_2(u1_struct_0(A),u1_orders_2(A)))
        & v24_waybel_0(g1_orders_2(u1_struct_0(A),u1_orders_2(A)))
        & v2_waybel_3(g1_orders_2(u1_struct_0(A),u1_orders_2(A)))
        & v3_waybel_3(g1_orders_2(u1_struct_0(A),u1_orders_2(A)))
        & v1_waybel_8(g1_orders_2(u1_struct_0(A),u1_orders_2(A)))
        & v2_waybel_8(g1_orders_2(u1_struct_0(A),u1_orders_2(A)))
        & v3_waybel_8(g1_orders_2(u1_struct_0(A),u1_orders_2(A))) ) ) ).

fof(fc14_waybel_8,axiom,
    ! [A] :
      ( ~ v3_struct_0(k3_yellow_1(A))
      & v1_orders_2(k3_yellow_1(A))
      & v2_orders_2(k3_yellow_1(A))
      & v3_orders_2(k3_yellow_1(A))
      & v4_orders_2(k3_yellow_1(A))
      & v1_lattice3(k3_yellow_1(A))
      & v2_lattice3(k3_yellow_1(A))
      & v3_lattice3(k3_yellow_1(A))
      & v1_yellow_0(k3_yellow_1(A))
      & v2_yellow_0(k3_yellow_1(A))
      & v3_yellow_0(k3_yellow_1(A))
      & v24_waybel_0(k3_yellow_1(A))
      & v25_waybel_0(k3_yellow_1(A))
      & v2_waybel_1(k3_yellow_1(A))
      & v9_waybel_1(k3_yellow_1(A))
      & v10_waybel_1(k3_yellow_1(A))
      & v11_waybel_1(k3_yellow_1(A))
      & v2_waybel_3(k3_yellow_1(A))
      & v3_waybel_3(k3_yellow_1(A))
      & v1_waybel_8(k3_yellow_1(A))
      & v2_waybel_8(k3_yellow_1(A)) ) ).

fof(fc15_waybel_0,axiom,
    ! [A] :
      ( ( ~ v3_struct_0(A)
        & l1_orders_2(A) )
     => ( ~ v1_xboole_0(k2_pre_topc(A))
        & v12_waybel_0(k2_pre_topc(A),A)
        & v13_waybel_0(k2_pre_topc(A),A) ) ) ).

fof(fc1_struct_0,axiom,
    ! [A] :
      ( ( ~ v3_struct_0(A)
        & l1_struct_0(A) )
     => ~ v1_xboole_0(u1_struct_0(A)) ) ).

fof(fc1_subset_1,axiom,
    ! [A] : ~ v1_xboole_0(k1_zfmisc_1(A)) ).

fof(fc1_waybel16,axiom,
    ! [A] :
      ( ( ~ v3_struct_0(A)
        & v2_orders_2(A)
        & v3_orders_2(A)
        & v4_orders_2(A)
        & v2_yellow_0(A)
        & l1_orders_2(A) )
     => ~ v1_xboole_0(k9_waybel_0(A)) ) ).

fof(fc1_xboole_0,axiom,
    v1_xboole_0(k1_xboole_0) ).

fof(fc1_yellow_0,axiom,
    ! [A,B] :
      ( m1_relset_1(B,k1_tarski(A),k1_tarski(A))
     => ( ~ v3_struct_0(g1_orders_2(k1_tarski(A),B))
        & v1_orders_2(g1_orders_2(k1_tarski(A),B))
        & v3_realset2(g1_orders_2(k1_tarski(A),B)) ) ) ).

fof(fc2_setfam_1,axiom,
    ! [A] :
      ( ~ v1_xboole_0(A)
     => ( ~ v1_xboole_0(k1_tarski(A))
        & v1_setfam_1(k1_tarski(A)) ) ) ).

fof(fc2_subset_1,axiom,
    ! [A] : ~ v1_xboole_0(k1_tarski(A)) ).

fof(fc2_waybel16,axiom,
    ! [A] :
      ( ( v2_orders_2(A)
        & v3_orders_2(A)
        & v4_orders_2(A)
        & v2_lattice3(A)
        & v2_yellow_0(A)
        & l1_orders_2(A) )
     => ( ~ v3_struct_0(k2_yellow_1(k9_waybel_0(A)))
        & v1_orders_2(k2_yellow_1(k9_waybel_0(A)))
        & v2_orders_2(k2_yellow_1(k9_waybel_0(A)))
        & v3_orders_2(k2_yellow_1(k9_waybel_0(A)))
        & v4_orders_2(k2_yellow_1(k9_waybel_0(A)))
        & v2_lattice3(k2_yellow_1(k9_waybel_0(A)))
        & v3_lattice3(k2_yellow_1(k9_waybel_0(A)))
        & v1_yellow_0(k2_yellow_1(k9_waybel_0(A)))
        & v24_waybel_0(k2_yellow_1(k9_waybel_0(A)))
        & v25_waybel_0(k2_yellow_1(k9_waybel_0(A))) ) ) ).

fof(fc2_waybel_0,axiom,
    ! [A] :
      ( ( v1_lattice3(A)
        & l1_orders_2(A) )
     => ( ~ v1_xboole_0(k2_pre_topc(A))
        & v1_waybel_0(k2_pre_topc(A),A) ) ) ).

fof(fc2_xboole_0,axiom,
    ! [A,B] :
      ( ~ v1_xboole_0(A)
     => ~ v1_xboole_0(k2_xboole_0(A,B)) ) ).

fof(fc2_yellow_0,axiom,
    ! [A] :
      ( ( ~ v3_struct_0(A)
        & l1_orders_2(A) )
     => ~ v1_xboole_0(k2_pre_topc(A)) ) ).

fof(fc3_setfam_1,axiom,
    ! [A,B] :
      ( ( ~ v1_xboole_0(A)
        & ~ v1_xboole_0(B) )
     => ( ~ v1_xboole_0(k2_tarski(A,B))
        & v1_setfam_1(k2_tarski(A,B)) ) ) ).

fof(fc3_subset_1,axiom,
    ! [A,B] : ~ v1_xboole_0(k2_tarski(A,B)) ).

fof(fc3_waybel_0,axiom,
    ! [A] :
      ( ( ~ v3_struct_0(A)
        & v2_yellow_0(A)
        & l1_orders_2(A) )
     => ( ~ v1_xboole_0(k2_pre_topc(A))
        & v1_waybel_0(k2_pre_topc(A),A) ) ) ).

fof(fc3_xboole_0,axiom,
    ! [A,B] :
      ( ~ v1_xboole_0(A)
     => ~ v1_xboole_0(k2_xboole_0(B,A)) ) ).

fof(fc4_setfam_1,axiom,
    ! [A,B] :
      ( ( v1_setfam_1(A)
        & v1_setfam_1(B) )
     => v1_setfam_1(k2_xboole_0(A,B)) ) ).

fof(fc4_subset_1,axiom,
    ! [A,B] :
      ( ( ~ v1_xboole_0(A)
        & ~ v1_xboole_0(B) )
     => ~ v1_xboole_0(k2_zfmisc_1(A,B)) ) ).

fof(fc4_waybel_0,axiom,
    ! [A] :
      ( ( v2_lattice3(A)
        & l1_orders_2(A) )
     => ( ~ v1_xboole_0(k2_pre_topc(A))
        & v2_waybel_0(k2_pre_topc(A),A) ) ) ).

fof(fc4_waybel_8,axiom,
    ! [A] :
      ( ( ~ v3_struct_0(A)
        & l1_orders_2(A) )
     => ( ~ v3_struct_0(g1_orders_2(u1_struct_0(A),u1_orders_2(A)))
        & v1_orders_2(g1_orders_2(u1_struct_0(A),u1_orders_2(A))) ) ) ).

fof(fc5_waybel_0,axiom,
    ! [A] :
      ( ( ~ v3_struct_0(A)
        & v1_yellow_0(A)
        & l1_orders_2(A) )
     => ( ~ v1_xboole_0(k2_pre_topc(A))
        & v2_waybel_0(k2_pre_topc(A),A) ) ) ).

fof(fc5_waybel_8,axiom,
    ! [A] :
      ( ( ~ v3_struct_0(A)
        & v2_orders_2(A)
        & l1_orders_2(A) )
     => ( ~ v3_struct_0(g1_orders_2(u1_struct_0(A),u1_orders_2(A)))
        & v1_orders_2(g1_orders_2(u1_struct_0(A),u1_orders_2(A)))
        & v2_orders_2(g1_orders_2(u1_struct_0(A),u1_orders_2(A))) ) ) ).

fof(fc6_waybel_8,axiom,
    ! [A] :
      ( ( v3_orders_2(A)
        & l1_orders_2(A) )
     => ( v1_orders_2(g1_orders_2(u1_struct_0(A),u1_orders_2(A)))
        & v3_orders_2(g1_orders_2(u1_struct_0(A),u1_orders_2(A))) ) ) ).

fof(fc7_waybel_8,axiom,
    ! [A] :
      ( ( v4_orders_2(A)
        & l1_orders_2(A) )
     => ( v1_orders_2(g1_orders_2(u1_struct_0(A),u1_orders_2(A)))
        & v4_orders_2(g1_orders_2(u1_struct_0(A),u1_orders_2(A))) ) ) ).

fof(fc8_waybel_8,axiom,
    ! [A] :
      ( ( v2_lattice3(A)
        & l1_orders_2(A) )
     => ( ~ v3_struct_0(g1_orders_2(u1_struct_0(A),u1_orders_2(A)))
        & v1_orders_2(g1_orders_2(u1_struct_0(A),u1_orders_2(A)))
        & v2_lattice3(g1_orders_2(u1_struct_0(A),u1_orders_2(A))) ) ) ).

fof(fc9_waybel_8,axiom,
    ! [A] :
      ( ( v1_lattice3(A)
        & l1_orders_2(A) )
     => ( ~ v3_struct_0(g1_orders_2(u1_struct_0(A),u1_orders_2(A)))
        & v1_orders_2(g1_orders_2(u1_struct_0(A),u1_orders_2(A)))
        & v1_lattice3(g1_orders_2(u1_struct_0(A),u1_orders_2(A))) ) ) ).

fof(fraenkel_a_1_1_waybel_0,axiom,
    ! [A,B] :
      ( ( ~ v3_struct_0(B)
        & v2_orders_2(B)
        & v3_orders_2(B)
        & l1_orders_2(B) )
     => ( r2_hidden(A,a_1_1_waybel_0(B))
      <=> ? [C] :
            ( ~ v1_xboole_0(C)
            & v2_waybel_0(C,B)
            & v13_waybel_0(C,B)
            & m1_subset_1(C,k1_zfmisc_1(u1_struct_0(B)))
            & A = C ) ) ) ).

fof(free_g1_orders_2,axiom,
    ! [A,B] :
      ( m1_relset_1(B,A,A)
     => ! [C,D] :
          ( g1_orders_2(A,B) = g1_orders_2(C,D)
         => ( A = C
            & B = D ) ) ) ).

fof(idempotence_k2_xboole_0,axiom,
    ! [A,B] : k2_xboole_0(A,A) = A ).

fof(idempotence_k3_xboole_0,axiom,
    ! [A,B] : k3_xboole_0(A,A) = A ).

fof(idempotence_k4_subset_1,axiom,
    ! [A,B,C] :
      ( ( m1_subset_1(B,k1_zfmisc_1(A))
        & m1_subset_1(C,k1_zfmisc_1(A)) )
     => k4_subset_1(A,B,B) = B ) ).

fof(rc10_waybel_0,axiom,
    ! [A] :
      ( ( ~ v3_struct_0(A)
        & v2_orders_2(A)
        & v3_orders_2(A)
        & l1_orders_2(A) )
     => ? [B] :
          ( m1_subset_1(B,k1_zfmisc_1(u1_struct_0(A)))
          & ~ v1_xboole_0(B)
          & v2_waybel_0(B,A)
          & v13_waybel_0(B,A) ) ) ).

fof(rc11_waybel_0,axiom,
    ! [A] :
      ( ( v2_orders_2(A)
        & v3_orders_2(A)
        & v4_orders_2(A)
        & v1_lattice3(A)
        & v2_lattice3(A)
        & l1_orders_2(A) )
     => ? [B] :
          ( m1_subset_1(B,k1_zfmisc_1(u1_struct_0(A)))
          & ~ v1_xboole_0(B)
          & v1_waybel_0(B,A)
          & v2_waybel_0(B,A)
          & v12_waybel_0(B,A)
          & v13_waybel_0(B,A) ) ) ).

fof(rc12_waybel_0,axiom,
    ? [A] :
      ( l1_orders_2(A)
      & ~ v3_struct_0(A)
      & v2_orders_2(A)
      & v3_orders_2(A)
      & v4_orders_2(A)
      & v16_waybel_0(A) ) ).

fof(rc13_waybel_0,axiom,
    ? [A] :
      ( l1_orders_2(A)
      & ~ v3_struct_0(A)
      & v1_orders_2(A)
      & v2_orders_2(A)
      & v3_orders_2(A)
      & v4_orders_2(A)
      & v1_lattice3(A)
      & v2_lattice3(A)
      & v3_lattice3(A)
      & v1_yellow_0(A)
      & v2_yellow_0(A)
      & v3_yellow_0(A)
      & v24_waybel_0(A)
      & v25_waybel_0(A) ) ).

fof(rc1_funct_1,axiom,
    ? [A] :
      ( v1_relat_1(A)
      & v1_funct_1(A) ) ).

fof(rc1_lattice3,axiom,
    ? [A] :
      ( l1_orders_2(A)
      & ~ v3_struct_0(A)
      & v1_orders_2(A)
      & v2_orders_2(A)
      & v3_orders_2(A)
      & v4_orders_2(A)
      & v3_lattice3(A) ) ).

fof(rc1_setfam_1,axiom,
    ? [A] :
      ( ~ v1_xboole_0(A)
      & v1_setfam_1(A) ) ).

fof(rc1_subset_1,axiom,
    ! [A] :
      ( ~ v1_xboole_0(A)
     => ? [B] :
          ( m1_subset_1(B,k1_zfmisc_1(A))
          & ~ v1_xboole_0(B) ) ) ).

fof(rc1_waybel_0,axiom,
    ! [A] :
      ( l1_orders_2(A)
     => ? [B] :
          ( m1_subset_1(B,k1_zfmisc_1(u1_struct_0(A)))
          & v1_waybel_0(B,A)
          & v2_waybel_0(B,A) ) ) ).

fof(rc1_waybel_5,axiom,
    ? [A] :
      ( l1_orders_2(A)
      & ~ v3_struct_0(A)
      & v2_orders_2(A)
      & v3_orders_2(A)
      & v4_orders_2(A)
      & v1_lattice3(A)
      & v2_lattice3(A)
      & v1_waybel_5(A) ) ).

fof(rc1_xboole_0,axiom,
    ? [A] : v1_xboole_0(A) ).

fof(rc1_yellow_0,axiom,
    ? [A] :
      ( l1_orders_2(A)
      & ~ v3_struct_0(A)
      & v1_orders_2(A)
      & v2_orders_2(A)
      & v3_orders_2(A)
      & v4_orders_2(A)
      & v1_lattice3(A)
      & v2_lattice3(A)
      & v3_lattice3(A)
      & v3_realset2(A) ) ).

fof(rc1_yellow_7,axiom,
    ? [A] :
      ( l1_orders_2(A)
      & ~ v3_struct_0(A)
      & v1_orders_2(A)
      & v2_orders_2(A)
      & v3_orders_2(A)
      & v4_orders_2(A)
      & v1_lattice3(A)
      & v2_lattice3(A)
      & v3_lattice3(A)
      & v1_yellow_0(A)
      & v2_yellow_0(A)
      & v3_yellow_0(A)
      & v16_waybel_0(A)
      & v24_waybel_0(A)
      & v25_waybel_0(A)
      & v2_waybel_1(A)
      & v9_waybel_1(A)
      & v1_waybel_5(A)
      & v3_realset2(A) ) ).

fof(rc2_funct_1,axiom,
    ? [A] :
      ( v1_relat_1(A)
      & v1_xboole_0(A)
      & v1_funct_1(A) ) ).

fof(rc2_lattice3,axiom,
    ? [A] :
      ( l1_orders_2(A)
      & ~ v3_struct_0(A)
      & v1_orders_2(A)
      & v2_orders_2(A)
      & v3_orders_2(A)
      & v4_orders_2(A)
      & v1_lattice3(A)
      & v2_lattice3(A)
      & v3_lattice3(A) ) ).

fof(rc2_subset_1,axiom,
    ! [A] :
    ? [B] :
      ( m1_subset_1(B,k1_zfmisc_1(A))
      & v1_xboole_0(B) ) ).

fof(rc2_xboole_0,axiom,
    ? [A] : ~ v1_xboole_0(A) ).

fof(rc2_yellow_0,axiom,
    ? [A] :
      ( l1_orders_2(A)
      & ~ v3_struct_0(A)
      & v2_orders_2(A)
      & v3_orders_2(A)
      & v4_orders_2(A)
      & v1_lattice3(A)
      & v2_lattice3(A)
      & v3_lattice3(A)
      & v1_yellow_0(A)
      & v2_yellow_0(A)
      & v3_yellow_0(A) ) ).

fof(rc3_funct_1,axiom,
    ? [A] :
      ( v1_relat_1(A)
      & v1_funct_1(A)
      & v2_funct_1(A) ) ).

fof(rc3_struct_0,axiom,
    ? [A] :
      ( l1_struct_0(A)
      & ~ v3_struct_0(A) ) ).

fof(rc3_yellow_0,axiom,
    ! [A] :
      ( l1_orders_2(A)
     => ? [B] :
          ( m1_yellow_0(B,A)
          & v1_orders_2(B)
          & v4_yellow_0(B,A) ) ) ).

fof(rc4_yellow_0,axiom,
    ! [A] :
      ( ( ~ v3_struct_0(A)
        & l1_orders_2(A) )
     => ? [B] :
          ( m1_yellow_0(B,A)
          & ~ v3_struct_0(B)
          & v1_orders_2(B)
          & v4_yellow_0(B,A) ) ) ).

fof(rc5_struct_0,axiom,
    ! [A] :
      ( ( ~ v3_struct_0(A)
        & l1_struct_0(A) )
     => ? [B] :
          ( m1_subset_1(B,k1_zfmisc_1(u1_struct_0(A)))
          & ~ v1_xboole_0(B) ) ) ).

fof(rc7_waybel_0,axiom,
    ! [A] :
      ( l1_orders_2(A)
     => ? [B] :
          ( m1_subset_1(B,k1_zfmisc_1(u1_struct_0(A)))
          & v12_waybel_0(B,A)
          & v13_waybel_0(B,A) ) ) ).

fof(rc8_waybel_0,axiom,
    ! [A] :
      ( ( ~ v3_struct_0(A)
        & l1_orders_2(A) )
     => ? [B] :
          ( m1_subset_1(B,k1_zfmisc_1(u1_struct_0(A)))
          & ~ v1_xboole_0(B)
          & v12_waybel_0(B,A)
          & v13_waybel_0(B,A) ) ) ).

fof(rc9_waybel_0,axiom,
    ! [A] :
      ( ( ~ v3_struct_0(A)
        & v2_orders_2(A)
        & v3_orders_2(A)
        & l1_orders_2(A) )
     => ? [B] :
          ( m1_subset_1(B,k1_zfmisc_1(u1_struct_0(A)))
          & ~ v1_xboole_0(B)
          & v1_waybel_0(B,A)
          & v12_waybel_0(B,A) ) ) ).

fof(redefinition_k1_toler_1,axiom,
    ! [A,B] :
      ( v1_relat_1(A)
     => k1_toler_1(A,B) = k2_wellord1(A,B) ) ).

fof(redefinition_k1_yellow_1,axiom,
    ! [A] : k1_yellow_1(A) = k1_wellord2(A) ).

fof(redefinition_k4_subset_1,axiom,
    ! [A,B,C] :
      ( ( m1_subset_1(B,k1_zfmisc_1(A))
        & m1_subset_1(C,k1_zfmisc_1(A)) )
     => k4_subset_1(A,B,C) = k2_xboole_0(B,C) ) ).

fof(redefinition_k5_setfam_1,axiom,
    ! [A,B] :
      ( m1_subset_1(B,k1_zfmisc_1(k1_zfmisc_1(A)))
     => k5_setfam_1(A,B) = k3_tarski(B) ) ).

fof(redefinition_k6_setfam_1,axiom,
    ! [A,B] :
      ( m1_subset_1(B,k1_zfmisc_1(k1_zfmisc_1(A)))
     => k6_setfam_1(A,B) = k1_setfam_1(B) ) ).

fof(redefinition_m2_relset_1,axiom,
    ! [A,B,C] :
      ( m2_relset_1(C,A,B)
    <=> m1_relset_1(C,A,B) ) ).

fof(redefinition_r3_orders_2,axiom,
    ! [A,B,C] :
      ( ( ~ v3_struct_0(A)
        & v2_orders_2(A)
        & l1_orders_2(A)
        & m1_subset_1(B,u1_struct_0(A))
        & m1_subset_1(C,u1_struct_0(A)) )
     => ( r3_orders_2(A,B,C)
      <=> r1_orders_2(A,B,C) ) ) ).

fof(reflexivity_r1_tarski,axiom,
    ! [A,B] : r1_tarski(A,A) ).

fof(reflexivity_r3_orders_2,axiom,
    ! [A,B,C] :
      ( ( ~ v3_struct_0(A)
        & v2_orders_2(A)
        & l1_orders_2(A)
        & m1_subset_1(B,u1_struct_0(A))
        & m1_subset_1(C,u1_struct_0(A)) )
     => r3_orders_2(A,B,B) ) ).

fof(t12_pre_topc,axiom,
    ! [A] :
      ( l1_struct_0(A)
     => k2_pre_topc(A) = u1_struct_0(A) ) ).

fof(t19_yellow_1,axiom,
    ! [A] : k4_yellow_0(k3_yellow_1(A)) = A ).

fof(t1_boole,axiom,
    ! [A] : k2_xboole_0(A,k1_xboole_0) = A ).

fof(t1_subset,axiom,
    ! [A,B] :
      ( r2_hidden(A,B)
     => m1_subset_1(A,B) ) ).

fof(t1_xboole_1,axiom,
    ! [A,B,C] :
      ( ( r1_tarski(A,B)
        & r1_tarski(B,C) )
     => r1_tarski(A,C) ) ).

fof(t20_yellow_1,axiom,
    ! [A,B] :
      ( ( ~ v1_xboole_0(B)
        & m1_subset_1(B,k1_zfmisc_1(u1_struct_0(k3_yellow_1(A)))) )
     => k2_yellow_0(k3_yellow_1(A),B) = k1_setfam_1(B) ) ).

fof(t21_yellow_1,axiom,
    ! [A,B] :
      ( m1_subset_1(B,k1_zfmisc_1(u1_struct_0(k3_yellow_1(A))))
     => k1_yellow_0(k3_yellow_1(A),B) = k3_tarski(B) ) ).

fof(t22_waybel_4,axiom,
    ! [A] :
      ( ( ~ v3_struct_0(A)
        & v2_orders_2(A)
        & v3_orders_2(A)
        & v4_orders_2(A)
        & v2_yellow_0(A)
        & l1_orders_2(A) )
     => ! [B] :
          ( ( ~ v1_xboole_0(B)
            & v2_waybel_0(B,A)
            & v13_waybel_0(B,A)
            & m1_subset_1(B,k1_zfmisc_1(u1_struct_0(A))) )
         => r2_hidden(k4_yellow_0(A),B) ) ) ).

fof(t28_waybel_0,axiom,
    ! [A] :
      ( l1_orders_2(A)
     => ! [B] :
          ( m1_subset_1(B,k1_zfmisc_1(k1_zfmisc_1(u1_struct_0(A))))
         => ( ! [C] :
                ( m1_subset_1(C,k1_zfmisc_1(u1_struct_0(A)))
               => ( r2_hidden(C,B)
                 => v13_waybel_0(C,A) ) )
           => ( v13_waybel_0(k5_setfam_1(u1_struct_0(A),B),A)
              & m1_subset_1(k5_setfam_1(u1_struct_0(A),B),k1_zfmisc_1(u1_struct_0(A))) ) ) ) ) ).

fof(t2_boole,axiom,
    ! [A] : k3_xboole_0(A,k1_xboole_0) = k1_xboole_0 ).

fof(t2_subset,axiom,
    ! [A,B] :
      ( m1_subset_1(A,B)
     => ( v1_xboole_0(B)
        | r2_hidden(A,B) ) ) ).

fof(t2_tarski,axiom,
    ! [A,B] :
      ( ! [C] :
          ( r2_hidden(C,A)
        <=> r2_hidden(C,B) )
     => A = B ) ).

fof(t30_relat_1,axiom,
    ! [A,B,C] :
      ( v1_relat_1(C)
     => ( r2_hidden(k4_tarski(A,B),C)
       => ( r2_hidden(A,k3_relat_1(C))
          & r2_hidden(B,k3_relat_1(C)) ) ) ) ).

fof(t39_yellow_2,axiom,
    ! [A] :
      ( l1_orders_2(A)
     => ! [B] :
          ( m1_subset_1(B,k1_zfmisc_1(k1_zfmisc_1(u1_struct_0(A))))
         => ( ! [C] :
                ( m1_subset_1(C,k1_zfmisc_1(u1_struct_0(A)))
               => ( r2_hidden(C,B)
                 => v13_waybel_0(C,A) ) )
           => ( v13_waybel_0(k6_setfam_1(u1_struct_0(A),B),A)
              & m1_subset_1(k6_setfam_1(u1_struct_0(A),B),k1_zfmisc_1(u1_struct_0(A))) ) ) ) ) ).

fof(t3_subset,axiom,
    ! [A,B] :
      ( m1_subset_1(A,k1_zfmisc_1(B))
    <=> r1_tarski(A,B) ) ).

fof(t3_yellow_1,axiom,
    ! [A] :
      ( ~ v1_xboole_0(A)
     => ! [B] :
          ( m1_subset_1(B,u1_struct_0(k2_yellow_1(A)))
         => ! [C] :
              ( m1_subset_1(C,u1_struct_0(k2_yellow_1(A)))
             => ( r3_orders_2(k2_yellow_1(A),B,C)
              <=> r1_tarski(B,C) ) ) ) ) ).

fof(t41_yellow_2,axiom,
    ! [A] :
      ( ( v4_orders_2(A)
        & v2_lattice3(A)
        & l1_orders_2(A) )
     => ! [B] :
          ( m1_subset_1(B,k1_zfmisc_1(k1_zfmisc_1(u1_struct_0(A))))
         => ( ! [C] :
                ( m1_subset_1(C,k1_zfmisc_1(u1_struct_0(A)))
               => ( r2_hidden(C,B)
                 => ( v13_waybel_0(C,A)
                    & v2_waybel_0(C,A) ) ) )
           => ( v2_waybel_0(k6_setfam_1(u1_struct_0(A),B),A)
              & m1_subset_1(k6_setfam_1(u1_struct_0(A),B),k1_zfmisc_1(u1_struct_0(A))) ) ) ) ) ).

fof(t47_waybel_0,axiom,
    ! [A] :
      ( l1_orders_2(A)
     => ! [B] :
          ( m1_subset_1(B,k1_zfmisc_1(k1_zfmisc_1(u1_struct_0(A))))
         => ( ( ! [C] :
                  ( m1_subset_1(C,k1_zfmisc_1(u1_struct_0(A)))
                 => ( r2_hidden(C,B)
                   => v2_waybel_0(C,A) ) )
              & ! [C] :
                  ( m1_subset_1(C,k1_zfmisc_1(u1_struct_0(A)))
                 => ! [D] :
                      ( m1_subset_1(D,k1_zfmisc_1(u1_struct_0(A)))
                     => ~ ( r2_hidden(C,B)
                          & r2_hidden(D,B)
                          & ! [E] :
                              ( m1_subset_1(E,k1_zfmisc_1(u1_struct_0(A)))
                             => ~ ( r2_hidden(E,B)
                                  & r1_tarski(k4_subset_1(u1_struct_0(A),C,D),E) ) ) ) ) ) )
           => ! [C] :
                ( m1_subset_1(C,k1_zfmisc_1(u1_struct_0(A)))
               => ( C = k5_setfam_1(u1_struct_0(A),B)
                 => v2_waybel_0(C,A) ) ) ) ) ) ).

fof(t4_subset,axiom,
    ! [A,B,C] :
      ( ( r2_hidden(A,B)
        & m1_subset_1(B,k1_zfmisc_1(C)) )
     => m1_subset_1(A,C) ) ).

fof(t4_yellow_1,axiom,
    ! [A] : k3_yellow_1(A) = k2_yellow_1(k1_zfmisc_1(A)) ).

fof(t5_subset,axiom,
    ! [A,B,C] :
      ~ ( r2_hidden(A,B)
        & m1_subset_1(B,k1_zfmisc_1(C))
        & v1_xboole_0(C) ) ).

fof(t6_boole,axiom,
    ! [A] :
      ( v1_xboole_0(A)
     => A = k1_xboole_0 ) ).

fof(t7_boole,axiom,
    ! [A,B] :
      ~ ( r2_hidden(A,B)
        & v1_xboole_0(B) ) ).

fof(t8_boole,axiom,
    ! [A,B] :
      ~ ( v1_xboole_0(A)
        & A != B
        & v1_xboole_0(B) ) ).

fof(t8_xboole_1,axiom,
    ! [A,B,C] :
      ( ( r1_tarski(A,B)
        & r1_tarski(C,B) )
     => r1_tarski(k2_xboole_0(A,C),B) ) ).

%------------------------------------------------------------------------------