TPTP Problem File: LAT347+1.p
View Solutions
- Solve Problem
%------------------------------------------------------------------------------
% File : LAT347+1 : TPTP v9.0.0. Released v3.4.0.
% Domain : Lattice Theory
% Problem : Representation Theorem for Free Continuous Lattices T01
% Version : [Urb08] axioms : Especial.
% English :
% Refs : [Rud96] Rudnicki (1998), Representation Theorem for Free Conti
% : [Urb07] Urban (2007), MPTP 0.2: Design, Implementation, and In
% : [Urb08] Urban (2006), Email to G. Sutcliffe
% Source : [Urb08]
% Names : t1_waybel22 [Urb08]
% Status : Theorem
% Rating : 0.36 v9.0.0, 0.44 v8.2.0, 0.39 v7.5.0, 0.44 v7.4.0, 0.23 v7.3.0, 0.34 v7.1.0, 0.35 v7.0.0, 0.43 v6.4.0, 0.42 v6.3.0, 0.38 v6.2.0, 0.40 v6.1.0, 0.53 v6.0.0, 0.48 v5.5.0, 0.56 v5.4.0, 0.61 v5.3.0, 0.67 v5.2.0, 0.55 v5.1.0, 0.57 v5.0.0, 0.54 v4.1.0, 0.57 v4.0.1, 0.61 v4.0.0, 0.58 v3.7.0, 0.55 v3.5.0, 0.63 v3.4.0
% Syntax : Number of formulae : 107 ( 20 unt; 0 def)
% Number of atoms : 458 ( 18 equ)
% Maximal formula atoms : 18 ( 4 avg)
% Number of connectives : 422 ( 71 ~; 1 |; 257 &)
% ( 5 <=>; 88 =>; 0 <=; 0 <~>)
% Maximal formula depth : 15 ( 5 avg)
% Maximal term depth : 5 ( 1 avg)
% Number of predicates : 30 ( 28 usr; 1 prp; 0-3 aty)
% Number of functors : 16 ( 16 usr; 1 con; 0-3 aty)
% Number of variables : 147 ( 121 !; 26 ?)
% SPC : FOF_THM_RFO_SEQ
% Comments : Normal version: includes the axioms (which may be theorems from
% other articles) and background that are possibly necessary.
% : Translated by MPTP from the Mizar Mathematical Library 4.48.930.
% : The problem encoding is based on set theory.
%------------------------------------------------------------------------------
fof(t1_waybel22,conjecture,
! [A] :
( ( v2_orders_2(A)
& v3_orders_2(A)
& v4_orders_2(A)
& v2_yellow_0(A)
& v2_lattice3(A)
& l1_orders_2(A) )
=> ! [B] :
( ( ~ v1_xboole_0(B)
& v1_waybel_0(B,k2_yellow_1(k9_waybel_0(A)))
& m1_subset_1(B,k1_zfmisc_1(u1_struct_0(k2_yellow_1(k9_waybel_0(A))))) )
=> k1_yellow_0(k2_yellow_1(k9_waybel_0(A)),B) = k3_tarski(B) ) ) ).
fof(abstractness_v1_orders_2,axiom,
! [A] :
( l1_orders_2(A)
=> ( v1_orders_2(A)
=> A = g1_orders_2(u1_struct_0(A),u1_orders_2(A)) ) ) ).
fof(antisymmetry_r2_hidden,axiom,
! [A,B] :
( r2_hidden(A,B)
=> ~ r2_hidden(B,A) ) ).
fof(cc10_waybel_0,axiom,
! [A] :
( l1_orders_2(A)
=> ( ( ~ v3_struct_0(A)
& v2_orders_2(A)
& v3_lattice3(A) )
=> ( ~ v3_struct_0(A)
& v2_orders_2(A)
& v24_waybel_0(A)
& v25_waybel_0(A) ) ) ) ).
fof(cc11_waybel_0,axiom,
! [A] :
( l1_orders_2(A)
=> ( ( ~ v3_struct_0(A)
& v2_orders_2(A)
& v25_waybel_0(A) )
=> ( ~ v3_struct_0(A)
& v2_orders_2(A)
& v1_yellow_0(A) ) ) ) ).
fof(cc12_waybel_0,axiom,
! [A] :
( l1_orders_2(A)
=> ( ( ~ v3_struct_0(A)
& v2_orders_2(A)
& v3_orders_2(A)
& v4_orders_2(A)
& v1_lattice3(A)
& v1_yellow_0(A)
& v24_waybel_0(A) )
=> ( ~ v3_struct_0(A)
& v2_orders_2(A)
& v3_orders_2(A)
& v4_orders_2(A)
& v1_lattice3(A)
& v2_lattice3(A)
& v3_lattice3(A)
& v1_yellow_0(A)
& v2_yellow_0(A)
& v3_yellow_0(A) ) ) ) ).
fof(cc13_waybel_0,axiom,
! [A] :
( l1_orders_2(A)
=> ( ( ~ v3_struct_0(A)
& v2_orders_2(A)
& v4_orders_2(A)
& v25_waybel_0(A) )
=> ( ~ v3_struct_0(A)
& v2_orders_2(A)
& v4_orders_2(A)
& v2_lattice3(A) ) ) ) ).
fof(cc14_waybel_0,axiom,
! [A] :
( l1_orders_2(A)
=> ( ( ~ v3_struct_0(A)
& v2_orders_2(A)
& v4_orders_2(A)
& v2_yellow_0(A)
& v25_waybel_0(A) )
=> ( ~ v3_struct_0(A)
& v2_orders_2(A)
& v4_orders_2(A)
& v1_lattice3(A)
& v2_yellow_0(A) ) ) ) ).
fof(cc1_funct_1,axiom,
! [A] :
( v1_xboole_0(A)
=> v1_funct_1(A) ) ).
fof(cc1_lattice3,axiom,
! [A] :
( l1_orders_2(A)
=> ( v1_lattice3(A)
=> ~ v3_struct_0(A) ) ) ).
fof(cc1_relset_1,axiom,
! [A,B,C] :
( m1_subset_1(C,k1_zfmisc_1(k2_zfmisc_1(A,B)))
=> v1_relat_1(C) ) ).
fof(cc1_yellow_0,axiom,
! [A] :
( l1_orders_2(A)
=> ( ( ~ v3_struct_0(A)
& v3_lattice3(A) )
=> ( ~ v3_struct_0(A)
& v1_lattice3(A)
& v2_lattice3(A) ) ) ) ).
fof(cc2_funct_1,axiom,
! [A] :
( ( v1_relat_1(A)
& v1_xboole_0(A)
& v1_funct_1(A) )
=> ( v1_relat_1(A)
& v1_funct_1(A)
& v2_funct_1(A) ) ) ).
fof(cc2_lattice3,axiom,
! [A] :
( l1_orders_2(A)
=> ( v2_lattice3(A)
=> ~ v3_struct_0(A) ) ) ).
fof(cc3_yellow_0,axiom,
! [A] :
( l1_orders_2(A)
=> ( ( ~ v3_struct_0(A)
& v3_lattice3(A) )
=> ( ~ v3_struct_0(A)
& v3_yellow_0(A) ) ) ) ).
fof(cc4_yellow_0,axiom,
! [A] :
( l1_orders_2(A)
=> ( v3_yellow_0(A)
=> ( v1_yellow_0(A)
& v2_yellow_0(A) ) ) ) ).
fof(cc5_yellow_0,axiom,
! [A] :
( l1_orders_2(A)
=> ( ( v1_yellow_0(A)
& v2_yellow_0(A) )
=> v3_yellow_0(A) ) ) ).
fof(cc9_waybel_0,axiom,
! [A] :
( l1_orders_2(A)
=> ( ( v2_orders_2(A)
& v1_lattice3(A)
& v24_waybel_0(A) )
=> ( ~ v3_struct_0(A)
& v2_orders_2(A)
& v1_lattice3(A)
& v2_yellow_0(A) ) ) ) ).
fof(d23_waybel_0,axiom,
! [A] :
( ( ~ v3_struct_0(A)
& v2_orders_2(A)
& v3_orders_2(A)
& l1_orders_2(A) )
=> k8_waybel_0(A) = a_1_0_waybel_0(A) ) ).
fof(d24_waybel_0,axiom,
! [A] :
( ( ~ v3_struct_0(A)
& v2_orders_2(A)
& v3_orders_2(A)
& l1_orders_2(A) )
=> k9_waybel_0(A) = a_1_1_waybel_0(A) ) ).
fof(d5_lattice3,axiom,
! [A] :
( l1_orders_2(A)
=> k7_lattice3(A) = g1_orders_2(u1_struct_0(A),k6_relset_1(u1_struct_0(A),u1_struct_0(A),u1_orders_2(A))) ) ).
fof(dt_g1_orders_2,axiom,
! [A,B] :
( m1_relset_1(B,A,A)
=> ( v1_orders_2(g1_orders_2(A,B))
& l1_orders_2(g1_orders_2(A,B)) ) ) ).
fof(dt_k1_xboole_0,axiom,
$true ).
fof(dt_k1_yellow_0,axiom,
! [A,B] :
( l1_orders_2(A)
=> m1_subset_1(k1_yellow_0(A,B),u1_struct_0(A)) ) ).
fof(dt_k1_zfmisc_1,axiom,
$true ).
fof(dt_k2_yellow_1,axiom,
! [A] :
( v1_orders_2(k2_yellow_1(A))
& l1_orders_2(k2_yellow_1(A)) ) ).
fof(dt_k2_zfmisc_1,axiom,
$true ).
fof(dt_k3_tarski,axiom,
$true ).
fof(dt_k4_relat_1,axiom,
! [A] :
( v1_relat_1(A)
=> v1_relat_1(k4_relat_1(A)) ) ).
fof(dt_k6_relset_1,axiom,
! [A,B,C] :
( m1_relset_1(C,A,B)
=> m2_relset_1(k6_relset_1(A,B,C),B,A) ) ).
fof(dt_k7_lattice3,axiom,
! [A] :
( l1_orders_2(A)
=> ( v1_orders_2(k7_lattice3(A))
& l1_orders_2(k7_lattice3(A)) ) ) ).
fof(dt_k8_waybel_0,axiom,
$true ).
fof(dt_k9_waybel_0,axiom,
$true ).
fof(dt_l1_orders_2,axiom,
! [A] :
( l1_orders_2(A)
=> l1_struct_0(A) ) ).
fof(dt_l1_struct_0,axiom,
$true ).
fof(dt_m1_relset_1,axiom,
$true ).
fof(dt_m1_subset_1,axiom,
$true ).
fof(dt_m2_relset_1,axiom,
! [A,B,C] :
( m2_relset_1(C,A,B)
=> m1_subset_1(C,k1_zfmisc_1(k2_zfmisc_1(A,B))) ) ).
fof(dt_u1_orders_2,axiom,
! [A] :
( l1_orders_2(A)
=> m2_relset_1(u1_orders_2(A),u1_struct_0(A),u1_struct_0(A)) ) ).
fof(dt_u1_struct_0,axiom,
$true ).
fof(existence_l1_orders_2,axiom,
? [A] : l1_orders_2(A) ).
fof(existence_l1_struct_0,axiom,
? [A] : l1_struct_0(A) ).
fof(existence_m1_relset_1,axiom,
! [A,B] :
? [C] : m1_relset_1(C,A,B) ).
fof(existence_m1_subset_1,axiom,
! [A] :
? [B] : m1_subset_1(B,A) ).
fof(existence_m2_relset_1,axiom,
! [A,B] :
? [C] : m2_relset_1(C,A,B) ).
fof(fc10_waybel_8,axiom,
! [A] :
( ( ~ v3_struct_0(A)
& v2_orders_2(A)
& v24_waybel_0(A)
& l1_orders_2(A) )
=> ( ~ v3_struct_0(g1_orders_2(u1_struct_0(A),u1_orders_2(A)))
& v1_orders_2(g1_orders_2(u1_struct_0(A),u1_orders_2(A)))
& v2_orders_2(g1_orders_2(u1_struct_0(A),u1_orders_2(A)))
& v24_waybel_0(g1_orders_2(u1_struct_0(A),u1_orders_2(A))) ) ) ).
fof(fc10_yellow_7,axiom,
! [A] :
( ( v2_yellow_0(A)
& l1_orders_2(A) )
=> ( v1_orders_2(k7_lattice3(A))
& v1_yellow_0(k7_lattice3(A)) ) ) ).
fof(fc1_struct_0,axiom,
! [A] :
( ( ~ v3_struct_0(A)
& l1_struct_0(A) )
=> ~ v1_xboole_0(u1_struct_0(A)) ) ).
fof(fc1_subset_1,axiom,
! [A] : ~ v1_xboole_0(k1_zfmisc_1(A)) ).
fof(fc1_waybel16,axiom,
! [A] :
( ( ~ v3_struct_0(A)
& v2_orders_2(A)
& v3_orders_2(A)
& v4_orders_2(A)
& v2_yellow_0(A)
& l1_orders_2(A) )
=> ~ v1_xboole_0(k9_waybel_0(A)) ) ).
fof(fc1_xboole_0,axiom,
v1_xboole_0(k1_xboole_0) ).
fof(fc1_yellow_7,axiom,
! [A] :
( ( v2_orders_2(A)
& l1_orders_2(A) )
=> ( v1_orders_2(k7_lattice3(A))
& v2_orders_2(k7_lattice3(A)) ) ) ).
fof(fc2_waybel16,axiom,
! [A] :
( ( v2_orders_2(A)
& v3_orders_2(A)
& v4_orders_2(A)
& v2_lattice3(A)
& v2_yellow_0(A)
& l1_orders_2(A) )
=> ( ~ v3_struct_0(k2_yellow_1(k9_waybel_0(A)))
& v1_orders_2(k2_yellow_1(k9_waybel_0(A)))
& v2_orders_2(k2_yellow_1(k9_waybel_0(A)))
& v3_orders_2(k2_yellow_1(k9_waybel_0(A)))
& v4_orders_2(k2_yellow_1(k9_waybel_0(A)))
& v2_lattice3(k2_yellow_1(k9_waybel_0(A)))
& v3_lattice3(k2_yellow_1(k9_waybel_0(A)))
& v1_yellow_0(k2_yellow_1(k9_waybel_0(A)))
& v24_waybel_0(k2_yellow_1(k9_waybel_0(A)))
& v25_waybel_0(k2_yellow_1(k9_waybel_0(A))) ) ) ).
fof(fc2_yellow_7,axiom,
! [A] :
( ( v3_orders_2(A)
& l1_orders_2(A) )
=> ( v1_orders_2(k7_lattice3(A))
& v3_orders_2(k7_lattice3(A)) ) ) ).
fof(fc3_funct_1,axiom,
! [A] :
( ( v1_relat_1(A)
& v1_funct_1(A)
& v2_funct_1(A) )
=> ( v1_relat_1(k4_relat_1(A))
& v1_funct_1(k4_relat_1(A)) ) ) ).
fof(fc3_yellow_7,axiom,
! [A] :
( ( v4_orders_2(A)
& l1_orders_2(A) )
=> ( v1_orders_2(k7_lattice3(A))
& v4_orders_2(k7_lattice3(A)) ) ) ).
fof(fc4_subset_1,axiom,
! [A,B] :
( ( ~ v1_xboole_0(A)
& ~ v1_xboole_0(B) )
=> ~ v1_xboole_0(k2_zfmisc_1(A,B)) ) ).
fof(fc4_waybel_8,axiom,
! [A] :
( ( ~ v3_struct_0(A)
& l1_orders_2(A) )
=> ( ~ v3_struct_0(g1_orders_2(u1_struct_0(A),u1_orders_2(A)))
& v1_orders_2(g1_orders_2(u1_struct_0(A),u1_orders_2(A))) ) ) ).
fof(fc5_lattice3,axiom,
! [A] :
( ( v2_orders_2(A)
& v3_orders_2(A)
& v4_orders_2(A)
& l1_orders_2(A) )
=> ( v1_orders_2(k7_lattice3(A))
& v2_orders_2(k7_lattice3(A))
& v3_orders_2(k7_lattice3(A))
& v4_orders_2(k7_lattice3(A)) ) ) ).
fof(fc5_waybel_8,axiom,
! [A] :
( ( ~ v3_struct_0(A)
& v2_orders_2(A)
& l1_orders_2(A) )
=> ( ~ v3_struct_0(g1_orders_2(u1_struct_0(A),u1_orders_2(A)))
& v1_orders_2(g1_orders_2(u1_struct_0(A),u1_orders_2(A)))
& v2_orders_2(g1_orders_2(u1_struct_0(A),u1_orders_2(A))) ) ) ).
fof(fc5_yellow_7,axiom,
! [A] :
( ( v2_lattice3(A)
& l1_orders_2(A) )
=> ( ~ v3_struct_0(k7_lattice3(A))
& v1_orders_2(k7_lattice3(A))
& v1_lattice3(k7_lattice3(A)) ) ) ).
fof(fc6_lattice3,axiom,
! [A] :
( ( ~ v3_struct_0(A)
& l1_orders_2(A) )
=> ( ~ v3_struct_0(k7_lattice3(A))
& v1_orders_2(k7_lattice3(A)) ) ) ).
fof(fc6_waybel_8,axiom,
! [A] :
( ( v3_orders_2(A)
& l1_orders_2(A) )
=> ( v1_orders_2(g1_orders_2(u1_struct_0(A),u1_orders_2(A)))
& v3_orders_2(g1_orders_2(u1_struct_0(A),u1_orders_2(A))) ) ) ).
fof(fc6_yellow_7,axiom,
! [A] :
( ( v1_lattice3(A)
& l1_orders_2(A) )
=> ( ~ v3_struct_0(k7_lattice3(A))
& v1_orders_2(k7_lattice3(A))
& v2_lattice3(k7_lattice3(A)) ) ) ).
fof(fc7_waybel_8,axiom,
! [A] :
( ( v4_orders_2(A)
& l1_orders_2(A) )
=> ( v1_orders_2(g1_orders_2(u1_struct_0(A),u1_orders_2(A)))
& v4_orders_2(g1_orders_2(u1_struct_0(A),u1_orders_2(A))) ) ) ).
fof(fc7_yellow_7,axiom,
! [A] :
( ( ~ v3_struct_0(A)
& v3_lattice3(A)
& l1_orders_2(A) )
=> ( ~ v3_struct_0(k7_lattice3(A))
& v1_orders_2(k7_lattice3(A))
& v1_lattice3(k7_lattice3(A))
& v2_lattice3(k7_lattice3(A))
& v3_lattice3(k7_lattice3(A))
& v1_yellow_0(k7_lattice3(A))
& v2_yellow_0(k7_lattice3(A))
& v3_yellow_0(k7_lattice3(A)) ) ) ).
fof(fc8_waybel_8,axiom,
! [A] :
( ( v2_lattice3(A)
& l1_orders_2(A) )
=> ( ~ v3_struct_0(g1_orders_2(u1_struct_0(A),u1_orders_2(A)))
& v1_orders_2(g1_orders_2(u1_struct_0(A),u1_orders_2(A)))
& v2_lattice3(g1_orders_2(u1_struct_0(A),u1_orders_2(A))) ) ) ).
fof(fc9_waybel_8,axiom,
! [A] :
( ( v1_lattice3(A)
& l1_orders_2(A) )
=> ( ~ v3_struct_0(g1_orders_2(u1_struct_0(A),u1_orders_2(A)))
& v1_orders_2(g1_orders_2(u1_struct_0(A),u1_orders_2(A)))
& v1_lattice3(g1_orders_2(u1_struct_0(A),u1_orders_2(A))) ) ) ).
fof(fc9_yellow_7,axiom,
! [A] :
( ( v1_yellow_0(A)
& l1_orders_2(A) )
=> ( v1_orders_2(k7_lattice3(A))
& v2_yellow_0(k7_lattice3(A)) ) ) ).
fof(fraenkel_a_1_0_waybel_0,axiom,
! [A,B] :
( ( ~ v3_struct_0(B)
& v2_orders_2(B)
& v3_orders_2(B)
& l1_orders_2(B) )
=> ( r2_hidden(A,a_1_0_waybel_0(B))
<=> ? [C] :
( ~ v1_xboole_0(C)
& v1_waybel_0(C,B)
& v12_waybel_0(C,B)
& m1_subset_1(C,k1_zfmisc_1(u1_struct_0(B)))
& A = C ) ) ) ).
fof(fraenkel_a_1_1_waybel_0,axiom,
! [A,B] :
( ( ~ v3_struct_0(B)
& v2_orders_2(B)
& v3_orders_2(B)
& l1_orders_2(B) )
=> ( r2_hidden(A,a_1_1_waybel_0(B))
<=> ? [C] :
( ~ v1_xboole_0(C)
& v2_waybel_0(C,B)
& v13_waybel_0(C,B)
& m1_subset_1(C,k1_zfmisc_1(u1_struct_0(B)))
& A = C ) ) ) ).
fof(free_g1_orders_2,axiom,
! [A,B] :
( m1_relset_1(B,A,A)
=> ! [C,D] :
( g1_orders_2(A,B) = g1_orders_2(C,D)
=> ( A = C
& B = D ) ) ) ).
fof(involutiveness_k4_relat_1,axiom,
! [A] :
( v1_relat_1(A)
=> k4_relat_1(k4_relat_1(A)) = A ) ).
fof(involutiveness_k6_relset_1,axiom,
! [A,B,C] :
( m1_relset_1(C,A,B)
=> k6_relset_1(A,B,k6_relset_1(A,B,C)) = C ) ).
fof(rc10_waybel_0,axiom,
! [A] :
( ( ~ v3_struct_0(A)
& v2_orders_2(A)
& v3_orders_2(A)
& l1_orders_2(A) )
=> ? [B] :
( m1_subset_1(B,k1_zfmisc_1(u1_struct_0(A)))
& ~ v1_xboole_0(B)
& v2_waybel_0(B,A)
& v13_waybel_0(B,A) ) ) ).
fof(rc11_waybel_0,axiom,
! [A] :
( ( v2_orders_2(A)
& v3_orders_2(A)
& v4_orders_2(A)
& v1_lattice3(A)
& v2_lattice3(A)
& l1_orders_2(A) )
=> ? [B] :
( m1_subset_1(B,k1_zfmisc_1(u1_struct_0(A)))
& ~ v1_xboole_0(B)
& v1_waybel_0(B,A)
& v2_waybel_0(B,A)
& v12_waybel_0(B,A)
& v13_waybel_0(B,A) ) ) ).
fof(rc13_waybel_0,axiom,
? [A] :
( l1_orders_2(A)
& ~ v3_struct_0(A)
& v1_orders_2(A)
& v2_orders_2(A)
& v3_orders_2(A)
& v4_orders_2(A)
& v1_lattice3(A)
& v2_lattice3(A)
& v3_lattice3(A)
& v1_yellow_0(A)
& v2_yellow_0(A)
& v3_yellow_0(A)
& v24_waybel_0(A)
& v25_waybel_0(A) ) ).
fof(rc1_funct_1,axiom,
? [A] :
( v1_relat_1(A)
& v1_funct_1(A) ) ).
fof(rc1_lattice3,axiom,
? [A] :
( l1_orders_2(A)
& ~ v3_struct_0(A)
& v1_orders_2(A)
& v2_orders_2(A)
& v3_orders_2(A)
& v4_orders_2(A)
& v3_lattice3(A) ) ).
fof(rc1_subset_1,axiom,
! [A] :
( ~ v1_xboole_0(A)
=> ? [B] :
( m1_subset_1(B,k1_zfmisc_1(A))
& ~ v1_xboole_0(B) ) ) ).
fof(rc1_waybel_0,axiom,
! [A] :
( l1_orders_2(A)
=> ? [B] :
( m1_subset_1(B,k1_zfmisc_1(u1_struct_0(A)))
& v1_waybel_0(B,A)
& v2_waybel_0(B,A) ) ) ).
fof(rc1_xboole_0,axiom,
? [A] : v1_xboole_0(A) ).
fof(rc2_funct_1,axiom,
? [A] :
( v1_relat_1(A)
& v1_xboole_0(A)
& v1_funct_1(A) ) ).
fof(rc2_lattice3,axiom,
? [A] :
( l1_orders_2(A)
& ~ v3_struct_0(A)
& v1_orders_2(A)
& v2_orders_2(A)
& v3_orders_2(A)
& v4_orders_2(A)
& v1_lattice3(A)
& v2_lattice3(A)
& v3_lattice3(A) ) ).
fof(rc2_subset_1,axiom,
! [A] :
? [B] :
( m1_subset_1(B,k1_zfmisc_1(A))
& v1_xboole_0(B) ) ).
fof(rc2_xboole_0,axiom,
? [A] : ~ v1_xboole_0(A) ).
fof(rc2_yellow_0,axiom,
? [A] :
( l1_orders_2(A)
& ~ v3_struct_0(A)
& v2_orders_2(A)
& v3_orders_2(A)
& v4_orders_2(A)
& v1_lattice3(A)
& v2_lattice3(A)
& v3_lattice3(A)
& v1_yellow_0(A)
& v2_yellow_0(A)
& v3_yellow_0(A) ) ).
fof(rc3_funct_1,axiom,
? [A] :
( v1_relat_1(A)
& v1_funct_1(A)
& v2_funct_1(A) ) ).
fof(rc3_struct_0,axiom,
? [A] :
( l1_struct_0(A)
& ~ v3_struct_0(A) ) ).
fof(rc5_struct_0,axiom,
! [A] :
( ( ~ v3_struct_0(A)
& l1_struct_0(A) )
=> ? [B] :
( m1_subset_1(B,k1_zfmisc_1(u1_struct_0(A)))
& ~ v1_xboole_0(B) ) ) ).
fof(rc7_waybel_0,axiom,
! [A] :
( l1_orders_2(A)
=> ? [B] :
( m1_subset_1(B,k1_zfmisc_1(u1_struct_0(A)))
& v12_waybel_0(B,A)
& v13_waybel_0(B,A) ) ) ).
fof(rc8_waybel_0,axiom,
! [A] :
( ( ~ v3_struct_0(A)
& l1_orders_2(A) )
=> ? [B] :
( m1_subset_1(B,k1_zfmisc_1(u1_struct_0(A)))
& ~ v1_xboole_0(B)
& v12_waybel_0(B,A)
& v13_waybel_0(B,A) ) ) ).
fof(rc9_waybel_0,axiom,
! [A] :
( ( ~ v3_struct_0(A)
& v2_orders_2(A)
& v3_orders_2(A)
& l1_orders_2(A) )
=> ? [B] :
( m1_subset_1(B,k1_zfmisc_1(u1_struct_0(A)))
& ~ v1_xboole_0(B)
& v1_waybel_0(B,A)
& v12_waybel_0(B,A) ) ) ).
fof(redefinition_k6_relset_1,axiom,
! [A,B,C] :
( m1_relset_1(C,A,B)
=> k6_relset_1(A,B,C) = k4_relat_1(C) ) ).
fof(redefinition_m2_relset_1,axiom,
! [A,B,C] :
( m2_relset_1(C,A,B)
<=> m1_relset_1(C,A,B) ) ).
fof(reflexivity_r1_tarski,axiom,
! [A,B] : r1_tarski(A,A) ).
fof(t1_subset,axiom,
! [A,B] :
( r2_hidden(A,B)
=> m1_subset_1(A,B) ) ).
fof(t2_subset,axiom,
! [A,B] :
( m1_subset_1(A,B)
=> ( v1_xboole_0(B)
| r2_hidden(A,B) ) ) ).
fof(t2_tarski,axiom,
! [A,B] :
( ! [C] :
( r2_hidden(C,A)
<=> r2_hidden(C,B) )
=> A = B ) ).
fof(t3_subset,axiom,
! [A,B] :
( m1_subset_1(A,k1_zfmisc_1(B))
<=> r1_tarski(A,B) ) ).
fof(t4_subset,axiom,
! [A,B,C] :
( ( r2_hidden(A,B)
& m1_subset_1(B,k1_zfmisc_1(C)) )
=> m1_subset_1(A,C) ) ).
fof(t5_subset,axiom,
! [A,B,C] :
~ ( r2_hidden(A,B)
& m1_subset_1(B,k1_zfmisc_1(C))
& v1_xboole_0(C) ) ).
fof(t6_boole,axiom,
! [A] :
( v1_xboole_0(A)
=> A = k1_xboole_0 ) ).
fof(t7_boole,axiom,
! [A,B] :
~ ( r2_hidden(A,B)
& v1_xboole_0(B) ) ).
fof(t7_waybel16,axiom,
! [A] :
( ( ~ v3_struct_0(A)
& v2_orders_2(A)
& v3_orders_2(A)
& l1_orders_2(A) )
=> k9_waybel_0(A) = k8_waybel_0(k7_lattice3(A)) ) ).
fof(t8_boole,axiom,
! [A,B] :
~ ( v1_xboole_0(A)
& A != B
& v1_xboole_0(B) ) ).
fof(t9_waybel13,axiom,
! [A] :
( ( v2_orders_2(A)
& v3_orders_2(A)
& v4_orders_2(A)
& v1_lattice3(A)
& v1_yellow_0(A)
& l1_orders_2(A) )
=> ! [B] :
( ( ~ v1_xboole_0(B)
& v1_waybel_0(B,k2_yellow_1(k8_waybel_0(A)))
& m1_subset_1(B,k1_zfmisc_1(u1_struct_0(k2_yellow_1(k8_waybel_0(A))))) )
=> k1_yellow_0(k2_yellow_1(k8_waybel_0(A)),B) = k3_tarski(B) ) ) ).
%------------------------------------------------------------------------------