TPTP Problem File: LAT344+1.p
View Solutions
- Solve Problem
%------------------------------------------------------------------------------
% File : LAT344+1 : TPTP v9.0.0. Released v3.4.0.
% Domain : Lattice Theory
% Problem : Dual Concept Lattices T16
% Version : [Urb08] axioms : Especial.
% English :
% Refs : [Sch01] Schwarzweller (2001), A Characterization of Concept La
% : [Urb07] Urban (2007), MPTP 0.2: Design, Implementation, and In
% : [Urb08] Urban (2006), Email to G. Sutcliffe
% Source : [Urb08]
% Names : t16_conlat_2 [Urb08]
% Status : Theorem
% Rating : 1.00 v3.4.0
% Syntax : Number of formulae : 118 ( 25 unt; 0 def)
% Number of atoms : 550 ( 21 equ)
% Maximal formula atoms : 15 ( 4 avg)
% Number of connectives : 525 ( 93 ~; 1 |; 302 &)
% ( 14 <=>; 115 =>; 0 <=; 0 <~>)
% Maximal formula depth : 15 ( 6 avg)
% Maximal term depth : 4 ( 1 avg)
% Number of predicates : 49 ( 47 usr; 1 prp; 0-3 aty)
% Number of functors : 21 ( 21 usr; 1 con; 0-4 aty)
% Number of variables : 219 ( 185 !; 34 ?)
% SPC : FOF_THM_RFO_SEQ
% Comments : Normal version: includes the axioms (which may be theorems from
% other articles) and background that are possibly necessary.
% : Translated by MPTP from the Mizar Mathematical Library 4.48.930.
% : The problem encoding is based on set theory.
%------------------------------------------------------------------------------
fof(t16_conlat_2,conjecture,
! [A] :
( ( ~ v3_struct_0(A)
& v10_lattices(A)
& l3_lattices(A) )
=> ( v4_lattice3(A)
<=> ? [B] :
( ~ v3_conlat_1(B)
& l2_conlat_1(B)
& r1_filter_1(k11_conlat_1(B),A) ) ) ) ).
fof(abstractness_v3_lattices,axiom,
! [A] :
( l3_lattices(A)
=> ( v3_lattices(A)
=> A = g3_lattices(u1_struct_0(A),u2_lattices(A),u1_lattices(A)) ) ) ).
fof(abstractness_v4_conlat_1,axiom,
! [A] :
( l2_conlat_1(A)
=> ( v4_conlat_1(A)
=> A = g2_conlat_1(u1_conlat_1(A),u2_conlat_1(A),u3_conlat_1(A)) ) ) ).
fof(antisymmetry_r2_hidden,axiom,
! [A,B] :
( r2_hidden(A,B)
=> ~ r2_hidden(B,A) ) ).
fof(cc1_funct_2,axiom,
! [A,B,C] :
( m1_relset_1(C,A,B)
=> ( ( v1_funct_1(C)
& v1_partfun1(C,A,B) )
=> ( v1_funct_1(C)
& v1_funct_2(C,A,B) ) ) ) ).
fof(cc1_lattices,axiom,
! [A] :
( l3_lattices(A)
=> ( ( ~ v3_struct_0(A)
& v10_lattices(A) )
=> ( ~ v3_struct_0(A)
& v4_lattices(A)
& v5_lattices(A)
& v6_lattices(A)
& v7_lattices(A)
& v8_lattices(A)
& v9_lattices(A) ) ) ) ).
fof(cc1_relset_1,axiom,
! [A,B,C] :
( m1_subset_1(C,k1_zfmisc_1(k2_zfmisc_1(A,B)))
=> v1_relat_1(C) ) ).
fof(cc2_funct_2,axiom,
! [A,B,C] :
( m1_relset_1(C,A,B)
=> ( ( v1_funct_1(C)
& v1_funct_2(C,A,B)
& v3_funct_2(C,A,B) )
=> ( v1_funct_1(C)
& v2_funct_1(C)
& v1_funct_2(C,A,B)
& v2_funct_2(C,A,B) ) ) ) ).
fof(cc2_lattices,axiom,
! [A] :
( l3_lattices(A)
=> ( ( ~ v3_struct_0(A)
& v4_lattices(A)
& v5_lattices(A)
& v6_lattices(A)
& v7_lattices(A)
& v8_lattices(A)
& v9_lattices(A) )
=> ( ~ v3_struct_0(A)
& v10_lattices(A) ) ) ) ).
fof(cc3_funct_2,axiom,
! [A,B,C] :
( m1_relset_1(C,A,B)
=> ( ( v1_funct_1(C)
& v2_funct_1(C)
& v1_funct_2(C,A,B)
& v2_funct_2(C,A,B) )
=> ( v1_funct_1(C)
& v1_funct_2(C,A,B)
& v3_funct_2(C,A,B) ) ) ) ).
fof(cc3_lattices,axiom,
! [A] :
( l3_lattices(A)
=> ( ( ~ v3_struct_0(A)
& v13_lattices(A)
& v14_lattices(A) )
=> ( ~ v3_struct_0(A)
& v15_lattices(A) ) ) ) ).
fof(cc4_funct_2,axiom,
! [A,B] :
( m1_relset_1(B,A,A)
=> ( ( v1_funct_1(B)
& v1_partfun1(B,A,A)
& v1_relat_2(B)
& v1_funct_2(B,A,A) )
=> ( v1_funct_1(B)
& v2_funct_1(B)
& v1_funct_2(B,A,A)
& v2_funct_2(B,A,A)
& v3_funct_2(B,A,A) ) ) ) ).
fof(cc4_lattices,axiom,
! [A] :
( l3_lattices(A)
=> ( ( ~ v3_struct_0(A)
& v15_lattices(A) )
=> ( ~ v3_struct_0(A)
& v13_lattices(A)
& v14_lattices(A) ) ) ) ).
fof(cc5_funct_2,axiom,
! [A,B] :
( ~ v1_xboole_0(B)
=> ! [C] :
( m1_relset_1(C,A,B)
=> ( ( v1_funct_1(C)
& v1_funct_2(C,A,B) )
=> ( v1_funct_1(C)
& v1_partfun1(C,A,B)
& v1_funct_2(C,A,B) ) ) ) ) ).
fof(cc6_funct_2,axiom,
! [A,B] :
( ( ~ v1_xboole_0(A)
& ~ v1_xboole_0(B) )
=> ! [C] :
( m1_relset_1(C,A,B)
=> ( ( v1_funct_1(C)
& v1_funct_2(C,A,B) )
=> ( v1_funct_1(C)
& ~ v1_xboole_0(C)
& v1_partfun1(C,A,B)
& v1_funct_2(C,A,B) ) ) ) ) ).
fof(d16_lattice3,axiom,
! [A] :
( ( ~ v3_struct_0(A)
& l3_lattices(A) )
=> ! [B] :
( m1_subset_1(B,u1_struct_0(A))
=> ! [C] :
( r3_lattice3(A,B,C)
<=> ! [D] :
( m1_subset_1(D,u1_struct_0(A))
=> ( r2_hidden(D,C)
=> r1_lattices(A,B,D) ) ) ) ) ) ).
fof(d22_lattice3,axiom,
! [A] :
( ( ~ v3_struct_0(A)
& l3_lattices(A) )
=> ! [B] : k16_lattice3(A,B) = k15_lattice3(A,a_2_1_lattice3(A,B)) ) ).
fof(d3_tarski,axiom,
! [A,B] :
( r1_tarski(A,B)
<=> ! [C] :
( r2_hidden(C,A)
=> r2_hidden(C,B) ) ) ).
fof(d4_lattice4,axiom,
! [A] :
( ( ~ v3_struct_0(A)
& v10_lattices(A)
& l3_lattices(A) )
=> ! [B] :
( ( ~ v3_struct_0(B)
& v10_lattices(B)
& l3_lattices(B) )
=> ! [C] :
( m1_lattice4(C,A,B)
=> ( v3_lattice4(C,A,B)
<=> ( v1_lattice4(C,A,B)
& v2_lattice4(C,A,B) ) ) ) ) ) ).
fof(d5_lattice4,axiom,
! [A] :
( ( ~ v3_struct_0(A)
& v10_lattices(A)
& l3_lattices(A) )
=> ! [B] :
( ( ~ v3_struct_0(B)
& v10_lattices(B)
& l3_lattices(B) )
=> ( r1_filter_1(A,B)
<=> ? [C] :
( m1_lattice4(C,A,B)
& v3_lattice4(C,A,B) ) ) ) ) ).
fof(d6_conlat_2,axiom,
! [A] :
( ( ~ v3_struct_0(A)
& v10_lattices(A)
& l3_lattices(A) )
=> k6_conlat_2(A) = g2_conlat_1(u1_struct_0(A),u1_struct_0(A),k2_lattice3(A)) ) ).
fof(d6_vectsp_8,axiom,
! [A] :
( ( ~ v3_struct_0(A)
& l3_lattices(A) )
=> ( v4_lattice3(A)
<=> ! [B] :
( m1_subset_1(B,k1_zfmisc_1(u1_struct_0(A)))
=> ? [C] :
( m1_subset_1(C,u1_struct_0(A))
& r3_lattice3(A,C,B)
& ! [D] :
( m1_subset_1(D,u1_struct_0(A))
=> ( r3_lattice3(A,D,B)
=> r1_lattices(A,D,C) ) ) ) ) ) ) ).
fof(dt_g2_conlat_1,axiom,
! [A,B,C] :
( m1_relset_1(C,A,B)
=> ( v4_conlat_1(g2_conlat_1(A,B,C))
& l2_conlat_1(g2_conlat_1(A,B,C)) ) ) ).
fof(dt_g3_lattices,axiom,
! [A,B,C] :
( ( v1_funct_1(B)
& v1_funct_2(B,k2_zfmisc_1(A,A),A)
& m1_relset_1(B,k2_zfmisc_1(A,A),A)
& v1_funct_1(C)
& v1_funct_2(C,k2_zfmisc_1(A,A),A)
& m1_relset_1(C,k2_zfmisc_1(A,A),A) )
=> ( v3_lattices(g3_lattices(A,B,C))
& l3_lattices(g3_lattices(A,B,C)) ) ) ).
fof(dt_k11_conlat_1,axiom,
! [A] :
( ( ~ v3_conlat_1(A)
& l2_conlat_1(A) )
=> ( ~ v3_struct_0(k11_conlat_1(A))
& v3_lattices(k11_conlat_1(A))
& l3_lattices(k11_conlat_1(A)) ) ) ).
fof(dt_k15_lattice3,axiom,
! [A,B] :
( ( ~ v3_struct_0(A)
& l3_lattices(A) )
=> m1_subset_1(k15_lattice3(A,B),u1_struct_0(A)) ) ).
fof(dt_k16_lattice3,axiom,
! [A,B] :
( ( ~ v3_struct_0(A)
& l3_lattices(A) )
=> m1_subset_1(k16_lattice3(A,B),u1_struct_0(A)) ) ).
fof(dt_k1_funct_1,axiom,
$true ).
fof(dt_k1_xboole_0,axiom,
$true ).
fof(dt_k1_zfmisc_1,axiom,
$true ).
fof(dt_k2_lattice3,axiom,
! [A] :
( ( ~ v3_struct_0(A)
& v10_lattices(A)
& l3_lattices(A) )
=> ( v1_relat_2(k2_lattice3(A))
& v4_relat_2(k2_lattice3(A))
& v8_relat_2(k2_lattice3(A))
& v1_partfun1(k2_lattice3(A),u1_struct_0(A),u1_struct_0(A))
& m2_relset_1(k2_lattice3(A),u1_struct_0(A),u1_struct_0(A)) ) ) ).
fof(dt_k2_zfmisc_1,axiom,
$true ).
fof(dt_k6_conlat_2,axiom,
! [A] :
( ( ~ v3_struct_0(A)
& v10_lattices(A)
& l3_lattices(A) )
=> ( ~ v3_conlat_1(k6_conlat_2(A))
& v4_conlat_1(k6_conlat_2(A))
& l2_conlat_1(k6_conlat_2(A)) ) ) ).
fof(dt_k8_funct_2,axiom,
! [A,B,C,D] :
( ( ~ v1_xboole_0(A)
& v1_funct_1(C)
& v1_funct_2(C,A,B)
& m1_relset_1(C,A,B)
& m1_subset_1(D,A) )
=> m1_subset_1(k8_funct_2(A,B,C,D),B) ) ).
fof(dt_k9_filter_1,axiom,
! [A] :
( ( ~ v3_struct_0(A)
& v10_lattices(A)
& l3_lattices(A) )
=> v1_relat_1(k9_filter_1(A)) ) ).
fof(dt_l1_conlat_1,axiom,
$true ).
fof(dt_l1_lattices,axiom,
! [A] :
( l1_lattices(A)
=> l1_struct_0(A) ) ).
fof(dt_l1_struct_0,axiom,
$true ).
fof(dt_l2_conlat_1,axiom,
! [A] :
( l2_conlat_1(A)
=> l1_conlat_1(A) ) ).
fof(dt_l2_lattices,axiom,
! [A] :
( l2_lattices(A)
=> l1_struct_0(A) ) ).
fof(dt_l3_lattices,axiom,
! [A] :
( l3_lattices(A)
=> ( l1_lattices(A)
& l2_lattices(A) ) ) ).
fof(dt_m1_lattice4,axiom,
! [A,B] :
( ( ~ v3_struct_0(A)
& v10_lattices(A)
& l3_lattices(A)
& ~ v3_struct_0(B)
& v10_lattices(B)
& l3_lattices(B) )
=> ! [C] :
( m1_lattice4(C,A,B)
=> ( v1_funct_1(C)
& v1_funct_2(C,u1_struct_0(A),u1_struct_0(B))
& m2_relset_1(C,u1_struct_0(A),u1_struct_0(B)) ) ) ) ).
fof(dt_m1_relset_1,axiom,
$true ).
fof(dt_m1_subset_1,axiom,
$true ).
fof(dt_m2_relset_1,axiom,
! [A,B,C] :
( m2_relset_1(C,A,B)
=> m1_subset_1(C,k1_zfmisc_1(k2_zfmisc_1(A,B))) ) ).
fof(dt_u1_conlat_1,axiom,
$true ).
fof(dt_u1_lattices,axiom,
! [A] :
( l1_lattices(A)
=> ( v1_funct_1(u1_lattices(A))
& v1_funct_2(u1_lattices(A),k2_zfmisc_1(u1_struct_0(A),u1_struct_0(A)),u1_struct_0(A))
& m2_relset_1(u1_lattices(A),k2_zfmisc_1(u1_struct_0(A),u1_struct_0(A)),u1_struct_0(A)) ) ) ).
fof(dt_u1_struct_0,axiom,
$true ).
fof(dt_u2_conlat_1,axiom,
$true ).
fof(dt_u2_lattices,axiom,
! [A] :
( l2_lattices(A)
=> ( v1_funct_1(u2_lattices(A))
& v1_funct_2(u2_lattices(A),k2_zfmisc_1(u1_struct_0(A),u1_struct_0(A)),u1_struct_0(A))
& m2_relset_1(u2_lattices(A),k2_zfmisc_1(u1_struct_0(A),u1_struct_0(A)),u1_struct_0(A)) ) ) ).
fof(dt_u3_conlat_1,axiom,
! [A] :
( l2_conlat_1(A)
=> m2_relset_1(u3_conlat_1(A),u1_conlat_1(A),u2_conlat_1(A)) ) ).
fof(existence_l1_conlat_1,axiom,
? [A] : l1_conlat_1(A) ).
fof(existence_l1_lattices,axiom,
? [A] : l1_lattices(A) ).
fof(existence_l1_struct_0,axiom,
? [A] : l1_struct_0(A) ).
fof(existence_l2_conlat_1,axiom,
? [A] : l2_conlat_1(A) ).
fof(existence_l2_lattices,axiom,
? [A] : l2_lattices(A) ).
fof(existence_l3_lattices,axiom,
? [A] : l3_lattices(A) ).
fof(existence_m1_lattice4,axiom,
! [A,B] :
( ( ~ v3_struct_0(A)
& v10_lattices(A)
& l3_lattices(A)
& ~ v3_struct_0(B)
& v10_lattices(B)
& l3_lattices(B) )
=> ? [C] : m1_lattice4(C,A,B) ) ).
fof(existence_m1_relset_1,axiom,
! [A,B] :
? [C] : m1_relset_1(C,A,B) ).
fof(existence_m1_subset_1,axiom,
! [A] :
? [B] : m1_subset_1(B,A) ).
fof(existence_m2_relset_1,axiom,
! [A,B] :
? [C] : m2_relset_1(C,A,B) ).
fof(fc1_conlat_1,axiom,
! [A] :
( ( ~ v3_conlat_1(A)
& l1_conlat_1(A) )
=> ~ v1_xboole_0(u2_conlat_1(A)) ) ).
fof(fc1_conlat_2,axiom,
! [A] :
( ( ~ v3_conlat_1(A)
& l2_conlat_1(A) )
=> ( ~ v3_struct_0(k11_conlat_1(A))
& v3_lattices(k11_conlat_1(A))
& v4_lattices(k11_conlat_1(A))
& v5_lattices(k11_conlat_1(A))
& v6_lattices(k11_conlat_1(A))
& v7_lattices(k11_conlat_1(A))
& v8_lattices(k11_conlat_1(A))
& v9_lattices(k11_conlat_1(A))
& v10_lattices(k11_conlat_1(A))
& v13_lattices(k11_conlat_1(A))
& v14_lattices(k11_conlat_1(A))
& v15_lattices(k11_conlat_1(A))
& v4_lattice3(k11_conlat_1(A)) ) ) ).
fof(fc1_struct_0,axiom,
! [A] :
( ( ~ v3_struct_0(A)
& l1_struct_0(A) )
=> ~ v1_xboole_0(u1_struct_0(A)) ) ).
fof(fc1_subset_1,axiom,
! [A] : ~ v1_xboole_0(k1_zfmisc_1(A)) ).
fof(fc1_xboole_0,axiom,
v1_xboole_0(k1_xboole_0) ).
fof(fc2_conlat_1,axiom,
! [A] :
( ( ~ v3_conlat_1(A)
& l1_conlat_1(A) )
=> ~ v1_xboole_0(u1_conlat_1(A)) ) ).
fof(fc2_lattice2,axiom,
! [A] :
( ( ~ v3_struct_0(A)
& v4_lattices(A)
& l2_lattices(A) )
=> ( v1_relat_1(u2_lattices(A))
& v1_funct_1(u2_lattices(A))
& v1_funct_2(u2_lattices(A),k2_zfmisc_1(u1_struct_0(A),u1_struct_0(A)),u1_struct_0(A))
& v1_binop_1(u2_lattices(A),u1_struct_0(A))
& v1_partfun1(u2_lattices(A),k2_zfmisc_1(u1_struct_0(A),u1_struct_0(A)),u1_struct_0(A)) ) ) ).
fof(fc3_lattice2,axiom,
! [A] :
( ( ~ v3_struct_0(A)
& v5_lattices(A)
& l2_lattices(A) )
=> ( v1_relat_1(u2_lattices(A))
& v1_funct_1(u2_lattices(A))
& v1_funct_2(u2_lattices(A),k2_zfmisc_1(u1_struct_0(A),u1_struct_0(A)),u1_struct_0(A))
& v2_binop_1(u2_lattices(A),u1_struct_0(A))
& v1_partfun1(u2_lattices(A),k2_zfmisc_1(u1_struct_0(A),u1_struct_0(A)),u1_struct_0(A)) ) ) ).
fof(fc3_lattices,axiom,
! [A,B,C] :
( ( ~ v1_xboole_0(A)
& v1_funct_1(B)
& v1_funct_2(B,k2_zfmisc_1(A,A),A)
& m1_relset_1(B,k2_zfmisc_1(A,A),A)
& v1_funct_1(C)
& v1_funct_2(C,k2_zfmisc_1(A,A),A)
& m1_relset_1(C,k2_zfmisc_1(A,A),A) )
=> ( ~ v3_struct_0(g3_lattices(A,B,C))
& v3_lattices(g3_lattices(A,B,C)) ) ) ).
fof(fc4_conlat_1,axiom,
! [A] :
( ( ~ v3_conlat_1(A)
& l2_conlat_1(A) )
=> ( ~ v3_struct_0(k11_conlat_1(A))
& v3_lattices(k11_conlat_1(A))
& v4_lattices(k11_conlat_1(A))
& v5_lattices(k11_conlat_1(A))
& v6_lattices(k11_conlat_1(A))
& v7_lattices(k11_conlat_1(A))
& v8_lattices(k11_conlat_1(A))
& v9_lattices(k11_conlat_1(A))
& v10_lattices(k11_conlat_1(A)) ) ) ).
fof(fc4_lattice2,axiom,
! [A] :
( ( ~ v3_struct_0(A)
& v6_lattices(A)
& l1_lattices(A) )
=> ( v1_relat_1(u1_lattices(A))
& v1_funct_1(u1_lattices(A))
& v1_funct_2(u1_lattices(A),k2_zfmisc_1(u1_struct_0(A),u1_struct_0(A)),u1_struct_0(A))
& v1_binop_1(u1_lattices(A),u1_struct_0(A))
& v1_partfun1(u1_lattices(A),k2_zfmisc_1(u1_struct_0(A),u1_struct_0(A)),u1_struct_0(A)) ) ) ).
fof(fc4_subset_1,axiom,
! [A,B] :
( ( ~ v1_xboole_0(A)
& ~ v1_xboole_0(B) )
=> ~ v1_xboole_0(k2_zfmisc_1(A,B)) ) ).
fof(fc5_conlat_1,axiom,
! [A] :
( ( ~ v3_conlat_1(A)
& l2_conlat_1(A) )
=> ( ~ v3_struct_0(k11_conlat_1(A))
& v3_lattices(k11_conlat_1(A))
& v4_lattices(k11_conlat_1(A))
& v5_lattices(k11_conlat_1(A))
& v6_lattices(k11_conlat_1(A))
& v7_lattices(k11_conlat_1(A))
& v8_lattices(k11_conlat_1(A))
& v9_lattices(k11_conlat_1(A))
& v10_lattices(k11_conlat_1(A))
& v4_lattice3(k11_conlat_1(A)) ) ) ).
fof(fc5_lattice2,axiom,
! [A] :
( ( ~ v3_struct_0(A)
& v7_lattices(A)
& l1_lattices(A) )
=> ( v1_relat_1(u1_lattices(A))
& v1_funct_1(u1_lattices(A))
& v1_funct_2(u1_lattices(A),k2_zfmisc_1(u1_struct_0(A),u1_struct_0(A)),u1_struct_0(A))
& v2_binop_1(u1_lattices(A),u1_struct_0(A))
& v1_partfun1(u1_lattices(A),k2_zfmisc_1(u1_struct_0(A),u1_struct_0(A)),u1_struct_0(A)) ) ) ).
fof(fraenkel_a_2_1_lattice3,axiom,
! [A,B,C] :
( ( ~ v3_struct_0(B)
& l3_lattices(B) )
=> ( r2_hidden(A,a_2_1_lattice3(B,C))
<=> ? [D] :
( m1_subset_1(D,u1_struct_0(B))
& A = D
& r3_lattice3(B,D,C) ) ) ) ).
fof(fraenkel_a_4_12_conlat_2,axiom,
! [A,B,C,D,E] :
( ( ~ v3_struct_0(B)
& v10_lattices(B)
& l3_lattices(B)
& ~ v3_conlat_1(C)
& l2_conlat_1(C)
& m1_lattice4(D,B,k11_conlat_1(C))
& m1_subset_1(E,k1_zfmisc_1(u1_struct_0(B))) )
=> ( r2_hidden(A,a_4_12_conlat_2(B,C,D,E))
<=> ? [F] :
( m1_subset_1(F,u1_struct_0(B))
& A = k8_funct_2(u1_struct_0(B),u1_struct_0(k11_conlat_1(C)),D,F)
& r2_hidden(F,E) ) ) ) ).
fof(free_g2_conlat_1,axiom,
! [A,B,C] :
( m1_relset_1(C,A,B)
=> ! [D,E,F] :
( g2_conlat_1(A,B,C) = g2_conlat_1(D,E,F)
=> ( A = D
& B = E
& C = F ) ) ) ).
fof(free_g3_lattices,axiom,
! [A,B,C] :
( ( v1_funct_1(B)
& v1_funct_2(B,k2_zfmisc_1(A,A),A)
& m1_relset_1(B,k2_zfmisc_1(A,A),A)
& v1_funct_1(C)
& v1_funct_2(C,k2_zfmisc_1(A,A),A)
& m1_relset_1(C,k2_zfmisc_1(A,A),A) )
=> ! [D,E,F] :
( g3_lattices(A,B,C) = g3_lattices(D,E,F)
=> ( A = D
& B = E
& C = F ) ) ) ).
fof(rc11_lattices,axiom,
? [A] :
( l3_lattices(A)
& ~ v3_struct_0(A)
& v3_lattices(A)
& v4_lattices(A)
& v5_lattices(A)
& v6_lattices(A)
& v7_lattices(A)
& v8_lattices(A)
& v9_lattices(A)
& v10_lattices(A)
& v13_lattices(A)
& v14_lattices(A)
& v15_lattices(A) ) ).
fof(rc1_funct_2,axiom,
! [A,B] :
? [C] :
( m1_relset_1(C,A,B)
& v1_relat_1(C)
& v1_funct_1(C)
& v1_funct_2(C,A,B) ) ).
fof(rc1_partfun1,axiom,
? [A] :
( v1_relat_1(A)
& v1_funct_1(A)
& v2_funct_1(A)
& v1_xboole_0(A) ) ).
fof(rc1_subset_1,axiom,
! [A] :
( ~ v1_xboole_0(A)
=> ? [B] :
( m1_subset_1(B,k1_zfmisc_1(A))
& ~ v1_xboole_0(B) ) ) ).
fof(rc1_xboole_0,axiom,
? [A] : v1_xboole_0(A) ).
fof(rc2_funct_2,axiom,
! [A] :
? [B] :
( m1_relset_1(B,A,A)
& v1_relat_1(B)
& v1_funct_1(B)
& v2_funct_1(B)
& v1_funct_2(B,A,A)
& v2_funct_2(B,A,A)
& v3_funct_2(B,A,A) ) ).
fof(rc2_partfun1,axiom,
! [A,B] :
? [C] :
( m1_relset_1(C,A,B)
& v1_relat_1(C)
& v1_funct_1(C) ) ).
fof(rc2_subset_1,axiom,
! [A] :
? [B] :
( m1_subset_1(B,k1_zfmisc_1(A))
& v1_xboole_0(B) ) ).
fof(rc2_xboole_0,axiom,
? [A] : ~ v1_xboole_0(A) ).
fof(rc3_lattices,axiom,
? [A] :
( l3_lattices(A)
& v3_lattices(A) ) ).
fof(rc3_struct_0,axiom,
? [A] :
( l1_struct_0(A)
& ~ v3_struct_0(A) ) ).
fof(rc5_conlat_1,axiom,
? [A] :
( l2_conlat_1(A)
& v4_conlat_1(A) ) ).
fof(rc5_struct_0,axiom,
! [A] :
( ( ~ v3_struct_0(A)
& l1_struct_0(A) )
=> ? [B] :
( m1_subset_1(B,k1_zfmisc_1(u1_struct_0(A)))
& ~ v1_xboole_0(B) ) ) ).
fof(rc6_lattices,axiom,
? [A] :
( l3_lattices(A)
& ~ v3_struct_0(A)
& v3_lattices(A) ) ).
fof(rc7_conlat_1,axiom,
? [A] :
( l2_conlat_1(A)
& ~ v3_conlat_1(A)
& v4_conlat_1(A) ) ).
fof(rc8_conlat_1,axiom,
! [A] :
( ( ~ v3_conlat_1(A)
& l1_conlat_1(A) )
=> ? [B] :
( m1_subset_1(B,k1_zfmisc_1(u1_conlat_1(A)))
& ~ v1_xboole_0(B) ) ) ).
fof(rc9_conlat_1,axiom,
! [A] :
( ( ~ v3_conlat_1(A)
& l1_conlat_1(A) )
=> ? [B] :
( m1_subset_1(B,k1_zfmisc_1(u2_conlat_1(A)))
& ~ v1_xboole_0(B) ) ) ).
fof(rc9_lattices,axiom,
? [A] :
( l3_lattices(A)
& ~ v3_struct_0(A)
& v3_lattices(A)
& v4_lattices(A)
& v5_lattices(A)
& v6_lattices(A)
& v7_lattices(A)
& v8_lattices(A)
& v9_lattices(A)
& v10_lattices(A) ) ).
fof(redefinition_k2_lattice3,axiom,
! [A] :
( ( ~ v3_struct_0(A)
& v10_lattices(A)
& l3_lattices(A) )
=> k2_lattice3(A) = k9_filter_1(A) ) ).
fof(redefinition_k8_funct_2,axiom,
! [A,B,C,D] :
( ( ~ v1_xboole_0(A)
& v1_funct_1(C)
& v1_funct_2(C,A,B)
& m1_relset_1(C,A,B)
& m1_subset_1(D,A) )
=> k8_funct_2(A,B,C,D) = k1_funct_1(C,D) ) ).
fof(redefinition_m2_relset_1,axiom,
! [A,B,C] :
( m2_relset_1(C,A,B)
<=> m1_relset_1(C,A,B) ) ).
fof(redefinition_r3_lattices,axiom,
! [A,B,C] :
( ( ~ v3_struct_0(A)
& v6_lattices(A)
& v8_lattices(A)
& v9_lattices(A)
& l3_lattices(A)
& m1_subset_1(B,u1_struct_0(A))
& m1_subset_1(C,u1_struct_0(A)) )
=> ( r3_lattices(A,B,C)
<=> r1_lattices(A,B,C) ) ) ).
fof(reflexivity_r1_filter_1,axiom,
! [A,B] :
( ( ~ v3_struct_0(A)
& v10_lattices(A)
& l3_lattices(A)
& ~ v3_struct_0(B)
& v10_lattices(B)
& l3_lattices(B) )
=> r1_filter_1(A,A) ) ).
fof(reflexivity_r1_tarski,axiom,
! [A,B] : r1_tarski(A,A) ).
fof(reflexivity_r3_lattices,axiom,
! [A,B,C] :
( ( ~ v3_struct_0(A)
& v6_lattices(A)
& v8_lattices(A)
& v9_lattices(A)
& l3_lattices(A)
& m1_subset_1(B,u1_struct_0(A))
& m1_subset_1(C,u1_struct_0(A)) )
=> r3_lattices(A,B,B) ) ).
fof(symmetry_r1_filter_1,axiom,
! [A,B] :
( ( ~ v3_struct_0(A)
& v10_lattices(A)
& l3_lattices(A)
& ~ v3_struct_0(B)
& v10_lattices(B)
& l3_lattices(B) )
=> ( r1_filter_1(A,B)
=> r1_filter_1(B,A) ) ) ).
fof(t15_conlat_2,axiom,
! [A] :
( ( ~ v3_struct_0(A)
& v10_lattices(A)
& v4_lattice3(A)
& l3_lattices(A) )
=> r1_filter_1(k11_conlat_1(k6_conlat_2(A)),A) ) ).
fof(t1_subset,axiom,
! [A,B] :
( r2_hidden(A,B)
=> m1_subset_1(A,B) ) ).
fof(t2_subset,axiom,
! [A,B] :
( m1_subset_1(A,B)
=> ( v1_xboole_0(B)
| r2_hidden(A,B) ) ) ).
fof(t2_tarski,axiom,
! [A,B] :
( ! [C] :
( r2_hidden(C,A)
<=> r2_hidden(C,B) )
=> A = B ) ).
fof(t34_lattice3,axiom,
! [A] :
( ( ~ v3_struct_0(A)
& v10_lattices(A)
& v4_lattice3(A)
& l3_lattices(A) )
=> ! [B] :
( m1_subset_1(B,u1_struct_0(A))
=> ! [C] :
( B = k16_lattice3(A,C)
<=> ( r3_lattice3(A,B,C)
& ! [D] :
( m1_subset_1(D,u1_struct_0(A))
=> ( r3_lattice3(A,D,C)
=> r3_lattices(A,D,B) ) ) ) ) ) ) ).
fof(t3_subset,axiom,
! [A,B] :
( m1_subset_1(A,k1_zfmisc_1(B))
<=> r1_tarski(A,B) ) ).
fof(t4_subset,axiom,
! [A,B,C] :
( ( r2_hidden(A,B)
& m1_subset_1(B,k1_zfmisc_1(C)) )
=> m1_subset_1(A,C) ) ).
fof(t5_subset,axiom,
! [A,B,C] :
~ ( r2_hidden(A,B)
& m1_subset_1(B,k1_zfmisc_1(C))
& v1_xboole_0(C) ) ).
fof(t6_boole,axiom,
! [A] :
( v1_xboole_0(A)
=> A = k1_xboole_0 ) ).
fof(t7_boole,axiom,
! [A,B] :
~ ( r2_hidden(A,B)
& v1_xboole_0(B) ) ).
fof(t8_boole,axiom,
! [A,B] :
~ ( v1_xboole_0(A)
& A != B
& v1_xboole_0(B) ) ).
fof(t8_lattice4,axiom,
! [A] :
( ( ~ v3_struct_0(A)
& v10_lattices(A)
& l3_lattices(A) )
=> ! [B] :
( ( ~ v3_struct_0(B)
& v10_lattices(B)
& l3_lattices(B) )
=> ! [C] :
( m1_subset_1(C,u1_struct_0(A))
=> ! [D] :
( m1_subset_1(D,u1_struct_0(A))
=> ! [E] :
( m1_lattice4(E,A,B)
=> ( v1_lattice4(E,A,B)
=> ( r3_lattices(A,C,D)
<=> r3_lattices(B,k8_funct_2(u1_struct_0(A),u1_struct_0(B),E,C),k8_funct_2(u1_struct_0(A),u1_struct_0(B),E,D)) ) ) ) ) ) ) ) ).
fof(t9_lattice4,axiom,
! [A] :
( ( ~ v3_struct_0(A)
& v10_lattices(A)
& l3_lattices(A) )
=> ! [B] :
( ( ~ v3_struct_0(B)
& v10_lattices(B)
& l3_lattices(B) )
=> ! [C] :
( ( v1_funct_1(C)
& v1_funct_2(C,u1_struct_0(A),u1_struct_0(B))
& m2_relset_1(C,u1_struct_0(A),u1_struct_0(B)) )
=> ( v2_lattice4(C,A,B)
=> ! [D] :
( m1_subset_1(D,u1_struct_0(B))
=> ? [E] :
( m1_subset_1(E,u1_struct_0(A))
& D = k8_funct_2(u1_struct_0(A),u1_struct_0(B),C,E) ) ) ) ) ) ) ).
%------------------------------------------------------------------------------