TPTP Problem File: LAT335+1.p
View Solutions
- Solve Problem
%------------------------------------------------------------------------------
% File : LAT335+1 : TPTP v9.0.0. Released v3.4.0.
% Domain : Lattice Theory
% Problem : Ideals T79
% Version : [Urb08] axioms : Especial.
% English :
% Refs : [Ban96] Bancerek (1996), Ideals
% : [Urb07] Urban (2007), MPTP 0.2: Design, Implementation, and In
% : [Urb08] Urban (2006), Email to G. Sutcliffe
% Source : [Urb08]
% Names : t79_filter_2 [Urb08]
% Status : Theorem
% Rating : 1.00 v3.4.0
% Syntax : Number of formulae : 126 ( 29 unt; 0 def)
% Number of atoms : 602 ( 32 equ)
% Maximal formula atoms : 15 ( 4 avg)
% Number of connectives : 574 ( 98 ~; 1 |; 305 &)
% ( 11 <=>; 159 =>; 0 <=; 0 <~>)
% Maximal formula depth : 15 ( 6 avg)
% Maximal term depth : 3 ( 1 avg)
% Number of predicates : 37 ( 35 usr; 1 prp; 0-3 aty)
% Number of functors : 22 ( 22 usr; 1 con; 0-6 aty)
% Number of variables : 258 ( 231 !; 27 ?)
% SPC : FOF_THM_RFO_SEQ
% Comments : Normal version: includes the axioms (which may be theorems from
% other articles) and background that are possibly necessary.
% : Translated by MPTP from the Mizar Mathematical Library 4.48.930.
% : The problem encoding is based on set theory.
%------------------------------------------------------------------------------
fof(t79_filter_2,conjecture,
! [A] :
( ( ~ v3_struct_0(A)
& v10_lattices(A)
& l3_lattices(A) )
=> ! [B] :
( m1_subset_1(B,u1_struct_0(A))
=> ! [C] :
( m1_subset_1(C,u1_struct_0(A))
=> ( ( v3_filter_0(A)
& r3_lattices(A,B,C) )
=> v3_filter_0(k23_filter_2(A,k22_filter_2(A,B,C))) ) ) ) ) ).
fof(abstractness_v3_lattices,axiom,
! [A] :
( l3_lattices(A)
=> ( v3_lattices(A)
=> A = g3_lattices(u1_struct_0(A),u2_lattices(A),u1_lattices(A)) ) ) ).
fof(antisymmetry_r2_hidden,axiom,
! [A,B] :
( r2_hidden(A,B)
=> ~ r2_hidden(B,A) ) ).
fof(cc1_filter_0,axiom,
! [A] :
( l3_lattices(A)
=> ( ( ~ v3_struct_0(A)
& v10_lattices(A)
& v3_filter_0(A) )
=> ( ~ v3_struct_0(A)
& v4_lattices(A)
& v5_lattices(A)
& v6_lattices(A)
& v7_lattices(A)
& v8_lattices(A)
& v9_lattices(A)
& v10_lattices(A)
& v11_lattices(A)
& v12_lattices(A) ) ) ) ).
fof(cc1_funct_1,axiom,
! [A] :
( v1_xboole_0(A)
=> v1_funct_1(A) ) ).
fof(cc1_lattices,axiom,
! [A] :
( l3_lattices(A)
=> ( ( ~ v3_struct_0(A)
& v10_lattices(A) )
=> ( ~ v3_struct_0(A)
& v4_lattices(A)
& v5_lattices(A)
& v6_lattices(A)
& v7_lattices(A)
& v8_lattices(A)
& v9_lattices(A) ) ) ) ).
fof(cc1_realset1,axiom,
! [A] :
( ~ v1_realset1(A)
=> ~ v1_xboole_0(A) ) ).
fof(cc1_relset_1,axiom,
! [A,B,C] :
( m1_subset_1(C,k1_zfmisc_1(k2_zfmisc_1(A,B)))
=> v1_relat_1(C) ) ).
fof(cc2_funct_1,axiom,
! [A] :
( ( v1_relat_1(A)
& v1_xboole_0(A)
& v1_funct_1(A) )
=> ( v1_relat_1(A)
& v1_funct_1(A)
& v2_funct_1(A) ) ) ).
fof(cc2_lattices,axiom,
! [A] :
( l3_lattices(A)
=> ( ( ~ v3_struct_0(A)
& v4_lattices(A)
& v5_lattices(A)
& v6_lattices(A)
& v7_lattices(A)
& v8_lattices(A)
& v9_lattices(A) )
=> ( ~ v3_struct_0(A)
& v10_lattices(A) ) ) ) ).
fof(cc7_lattices,axiom,
! [A] :
( l3_lattices(A)
=> ( ( ~ v3_struct_0(A)
& v10_lattices(A)
& v11_lattices(A) )
=> ( ~ v3_struct_0(A)
& v4_lattices(A)
& v5_lattices(A)
& v6_lattices(A)
& v7_lattices(A)
& v8_lattices(A)
& v9_lattices(A)
& v10_lattices(A)
& v12_lattices(A) ) ) ) ).
fof(commutativity_k2_tarski,axiom,
! [A,B] : k2_tarski(A,B) = k2_tarski(B,A) ).
fof(commutativity_k3_lattices,axiom,
! [A,B,C] :
( ( ~ v3_struct_0(A)
& v4_lattices(A)
& l2_lattices(A)
& m1_subset_1(B,u1_struct_0(A))
& m1_subset_1(C,u1_struct_0(A)) )
=> k3_lattices(A,B,C) = k3_lattices(A,C,B) ) ).
fof(commutativity_k4_lattices,axiom,
! [A,B,C] :
( ( ~ v3_struct_0(A)
& v6_lattices(A)
& l1_lattices(A)
& m1_subset_1(B,u1_struct_0(A))
& m1_subset_1(C,u1_struct_0(A)) )
=> k4_lattices(A,B,C) = k4_lattices(A,C,B) ) ).
fof(d12_lattices,axiom,
! [A] :
( ( ~ v3_struct_0(A)
& l3_lattices(A) )
=> ( v12_lattices(A)
<=> ! [B] :
( m1_subset_1(B,u1_struct_0(A))
=> ! [C] :
( m1_subset_1(C,u1_struct_0(A))
=> ! [D] :
( m1_subset_1(D,u1_struct_0(A))
=> ( r1_lattices(A,B,D)
=> k1_lattices(A,B,k2_lattices(A,C,D)) = k2_lattices(A,k1_lattices(A,B,C),D) ) ) ) ) ) ) ).
fof(d1_binop_1,axiom,
! [A] :
( ( v1_relat_1(A)
& v1_funct_1(A) )
=> ! [B,C] : k1_binop_1(A,B,C) = k1_funct_1(A,k4_tarski(B,C)) ) ).
fof(d1_lattices,axiom,
! [A] :
( ( ~ v3_struct_0(A)
& l2_lattices(A) )
=> ! [B] :
( m1_subset_1(B,u1_struct_0(A))
=> ! [C] :
( m1_subset_1(C,u1_struct_0(A))
=> k1_lattices(A,B,C) = k2_binop_1(u1_struct_0(A),u1_struct_0(A),u1_struct_0(A),u2_lattices(A),B,C) ) ) ) ).
fof(d2_lattices,axiom,
! [A] :
( ( ~ v3_struct_0(A)
& l1_lattices(A) )
=> ! [B] :
( m1_subset_1(B,u1_struct_0(A))
=> ! [C] :
( m1_subset_1(C,u1_struct_0(A))
=> k2_lattices(A,B,C) = k2_binop_1(u1_struct_0(A),u1_struct_0(A),u1_struct_0(A),u1_lattices(A),B,C) ) ) ) ).
fof(d3_lattices,axiom,
! [A] :
( ( ~ v3_struct_0(A)
& l2_lattices(A) )
=> ! [B] :
( m1_subset_1(B,u1_struct_0(A))
=> ! [C] :
( m1_subset_1(C,u1_struct_0(A))
=> ( r1_lattices(A,B,C)
<=> k1_lattices(A,B,C) = C ) ) ) ) ).
fof(d3_realset1,axiom,
! [A] :
( v1_relat_1(A)
=> ! [B] : k1_realset1(A,B) = k7_relat_1(A,k2_zfmisc_1(B,B)) ) ).
fof(d5_tarski,axiom,
! [A,B] : k4_tarski(A,B) = k2_tarski(k2_tarski(A,B),k1_tarski(A)) ).
fof(d7_filter_0,axiom,
! [A] :
( ( ~ v3_struct_0(A)
& l3_lattices(A) )
=> ( v3_filter_0(A)
<=> ! [B] :
( m1_subset_1(B,u1_struct_0(A))
=> ! [C] :
( m1_subset_1(C,u1_struct_0(A))
=> ? [D] :
( m1_subset_1(D,u1_struct_0(A))
& r1_lattices(A,k2_lattices(A,B,D),C)
& ! [E] :
( m1_subset_1(E,u1_struct_0(A))
=> ( r1_lattices(A,k2_lattices(A,B,E),C)
=> r1_lattices(A,E,D) ) ) ) ) ) ) ) ).
fof(d7_lattices,axiom,
! [A] :
( ( ~ v3_struct_0(A)
& l1_lattices(A) )
=> ( v7_lattices(A)
<=> ! [B] :
( m1_subset_1(B,u1_struct_0(A))
=> ! [C] :
( m1_subset_1(C,u1_struct_0(A))
=> ! [D] :
( m1_subset_1(D,u1_struct_0(A))
=> k2_lattices(A,B,k2_lattices(A,C,D)) = k2_lattices(A,k2_lattices(A,B,C),D) ) ) ) ) ) ).
fof(d8_filter_0,axiom,
! [A] :
( ( ~ v3_struct_0(A)
& v10_lattices(A)
& l3_lattices(A) )
=> ! [B] :
( m1_subset_1(B,u1_struct_0(A))
=> ! [C] :
( m1_subset_1(C,u1_struct_0(A))
=> ( ( ~ v3_struct_0(A)
& v10_lattices(A)
& v3_filter_0(A)
& l3_lattices(A) )
=> ! [D] :
( m1_subset_1(D,u1_struct_0(A))
=> ( D = k4_filter_0(A,B,C)
<=> ( r3_lattices(A,k4_lattices(A,B,D),C)
& ! [E] :
( m1_subset_1(E,u1_struct_0(A))
=> ( r3_lattices(A,k4_lattices(A,B,E),C)
=> r3_lattices(A,E,D) ) ) ) ) ) ) ) ) ) ).
fof(dt_g3_lattices,axiom,
! [A,B,C] :
( ( v1_funct_1(B)
& v1_funct_2(B,k2_zfmisc_1(A,A),A)
& m1_relset_1(B,k2_zfmisc_1(A,A),A)
& v1_funct_1(C)
& v1_funct_2(C,k2_zfmisc_1(A,A),A)
& m1_relset_1(C,k2_zfmisc_1(A,A),A) )
=> ( v3_lattices(g3_lattices(A,B,C))
& l3_lattices(g3_lattices(A,B,C)) ) ) ).
fof(dt_k1_binop_1,axiom,
$true ).
fof(dt_k1_funct_1,axiom,
$true ).
fof(dt_k1_lattices,axiom,
! [A,B,C] :
( ( ~ v3_struct_0(A)
& l2_lattices(A)
& m1_subset_1(B,u1_struct_0(A))
& m1_subset_1(C,u1_struct_0(A)) )
=> m1_subset_1(k1_lattices(A,B,C),u1_struct_0(A)) ) ).
fof(dt_k1_realset1,axiom,
$true ).
fof(dt_k1_tarski,axiom,
$true ).
fof(dt_k1_xboole_0,axiom,
$true ).
fof(dt_k1_zfmisc_1,axiom,
$true ).
fof(dt_k22_filter_2,axiom,
! [A,B,C] :
( ( ~ v3_struct_0(A)
& v10_lattices(A)
& l3_lattices(A)
& m1_subset_1(B,u1_struct_0(A))
& m1_subset_1(C,u1_struct_0(A)) )
=> ( ~ v1_xboole_0(k22_filter_2(A,B,C))
& m2_lattice4(k22_filter_2(A,B,C),A) ) ) ).
fof(dt_k23_filter_2,axiom,
! [A,B] :
( ( ~ v3_struct_0(A)
& v10_lattices(A)
& l3_lattices(A)
& ~ v1_xboole_0(B)
& m2_lattice4(B,A) )
=> m2_nat_lat(k23_filter_2(A,B),A) ) ).
fof(dt_k2_binop_1,axiom,
! [A,B,C,D,E,F] :
( ( ~ v1_xboole_0(A)
& ~ v1_xboole_0(B)
& v1_funct_1(D)
& v1_funct_2(D,k2_zfmisc_1(A,B),C)
& m1_relset_1(D,k2_zfmisc_1(A,B),C)
& m1_subset_1(E,A)
& m1_subset_1(F,B) )
=> m1_subset_1(k2_binop_1(A,B,C,D,E,F),C) ) ).
fof(dt_k2_lattices,axiom,
! [A,B,C] :
( ( ~ v3_struct_0(A)
& l1_lattices(A)
& m1_subset_1(B,u1_struct_0(A))
& m1_subset_1(C,u1_struct_0(A)) )
=> m1_subset_1(k2_lattices(A,B,C),u1_struct_0(A)) ) ).
fof(dt_k2_tarski,axiom,
$true ).
fof(dt_k2_zfmisc_1,axiom,
$true ).
fof(dt_k3_lattices,axiom,
! [A,B,C] :
( ( ~ v3_struct_0(A)
& v4_lattices(A)
& l2_lattices(A)
& m1_subset_1(B,u1_struct_0(A))
& m1_subset_1(C,u1_struct_0(A)) )
=> m1_subset_1(k3_lattices(A,B,C),u1_struct_0(A)) ) ).
fof(dt_k4_filter_0,axiom,
! [A,B,C] :
( ( ~ v3_struct_0(A)
& v10_lattices(A)
& l3_lattices(A)
& m1_subset_1(B,u1_struct_0(A))
& m1_subset_1(C,u1_struct_0(A)) )
=> m1_subset_1(k4_filter_0(A,B,C),u1_struct_0(A)) ) ).
fof(dt_k4_lattices,axiom,
! [A,B,C] :
( ( ~ v3_struct_0(A)
& v6_lattices(A)
& l1_lattices(A)
& m1_subset_1(B,u1_struct_0(A))
& m1_subset_1(C,u1_struct_0(A)) )
=> m1_subset_1(k4_lattices(A,B,C),u1_struct_0(A)) ) ).
fof(dt_k4_tarski,axiom,
$true ).
fof(dt_k7_relat_1,axiom,
! [A,B] :
( v1_relat_1(A)
=> v1_relat_1(k7_relat_1(A,B)) ) ).
fof(dt_l1_lattices,axiom,
! [A] :
( l1_lattices(A)
=> l1_struct_0(A) ) ).
fof(dt_l1_struct_0,axiom,
$true ).
fof(dt_l2_lattices,axiom,
! [A] :
( l2_lattices(A)
=> l1_struct_0(A) ) ).
fof(dt_l3_lattices,axiom,
! [A] :
( l3_lattices(A)
=> ( l1_lattices(A)
& l2_lattices(A) ) ) ).
fof(dt_m1_relset_1,axiom,
$true ).
fof(dt_m1_subset_1,axiom,
$true ).
fof(dt_m2_lattice4,axiom,
! [A] :
( ( ~ v3_struct_0(A)
& v10_lattices(A)
& l3_lattices(A) )
=> ! [B] :
( m2_lattice4(B,A)
=> m1_subset_1(B,k1_zfmisc_1(u1_struct_0(A))) ) ) ).
fof(dt_m2_nat_lat,axiom,
! [A] :
( ( ~ v3_struct_0(A)
& v10_lattices(A)
& l3_lattices(A) )
=> ! [B] :
( m2_nat_lat(B,A)
=> ( ~ v3_struct_0(B)
& v10_lattices(B)
& l3_lattices(B) ) ) ) ).
fof(dt_m2_relset_1,axiom,
! [A,B,C] :
( m2_relset_1(C,A,B)
=> m1_subset_1(C,k1_zfmisc_1(k2_zfmisc_1(A,B))) ) ).
fof(dt_u1_lattices,axiom,
! [A] :
( l1_lattices(A)
=> ( v1_funct_1(u1_lattices(A))
& v1_funct_2(u1_lattices(A),k2_zfmisc_1(u1_struct_0(A),u1_struct_0(A)),u1_struct_0(A))
& m2_relset_1(u1_lattices(A),k2_zfmisc_1(u1_struct_0(A),u1_struct_0(A)),u1_struct_0(A)) ) ) ).
fof(dt_u1_struct_0,axiom,
$true ).
fof(dt_u2_lattices,axiom,
! [A] :
( l2_lattices(A)
=> ( v1_funct_1(u2_lattices(A))
& v1_funct_2(u2_lattices(A),k2_zfmisc_1(u1_struct_0(A),u1_struct_0(A)),u1_struct_0(A))
& m2_relset_1(u2_lattices(A),k2_zfmisc_1(u1_struct_0(A),u1_struct_0(A)),u1_struct_0(A)) ) ) ).
fof(existence_l1_lattices,axiom,
? [A] : l1_lattices(A) ).
fof(existence_l1_struct_0,axiom,
? [A] : l1_struct_0(A) ).
fof(existence_l2_lattices,axiom,
? [A] : l2_lattices(A) ).
fof(existence_l3_lattices,axiom,
? [A] : l3_lattices(A) ).
fof(existence_m1_relset_1,axiom,
! [A,B] :
? [C] : m1_relset_1(C,A,B) ).
fof(existence_m1_subset_1,axiom,
! [A] :
? [B] : m1_subset_1(B,A) ).
fof(existence_m2_lattice4,axiom,
! [A] :
( ( ~ v3_struct_0(A)
& v10_lattices(A)
& l3_lattices(A) )
=> ? [B] : m2_lattice4(B,A) ) ).
fof(existence_m2_nat_lat,axiom,
! [A] :
( ( ~ v3_struct_0(A)
& v10_lattices(A)
& l3_lattices(A) )
=> ? [B] : m2_nat_lat(B,A) ) ).
fof(existence_m2_relset_1,axiom,
! [A,B] :
? [C] : m2_relset_1(C,A,B) ).
fof(fc1_realset1,axiom,
! [A,B] :
( v1_relat_1(A)
=> v1_relat_1(k1_realset1(A,B)) ) ).
fof(fc1_struct_0,axiom,
! [A] :
( ( ~ v3_struct_0(A)
& l1_struct_0(A) )
=> ~ v1_xboole_0(u1_struct_0(A)) ) ).
fof(fc1_subset_1,axiom,
! [A] : ~ v1_xboole_0(k1_zfmisc_1(A)) ).
fof(fc1_xboole_0,axiom,
v1_xboole_0(k1_xboole_0) ).
fof(fc2_lattice2,axiom,
! [A] :
( ( ~ v3_struct_0(A)
& v4_lattices(A)
& l2_lattices(A) )
=> ( v1_relat_1(u2_lattices(A))
& v1_funct_1(u2_lattices(A))
& v1_funct_2(u2_lattices(A),k2_zfmisc_1(u1_struct_0(A),u1_struct_0(A)),u1_struct_0(A))
& v1_binop_1(u2_lattices(A),u1_struct_0(A))
& v1_partfun1(u2_lattices(A),k2_zfmisc_1(u1_struct_0(A),u1_struct_0(A)),u1_struct_0(A)) ) ) ).
fof(fc2_realset1,axiom,
! [A,B] :
( ( v1_relat_1(A)
& v1_funct_1(A) )
=> ( v1_relat_1(k1_realset1(A,B))
& v1_funct_1(k1_realset1(A,B)) ) ) ).
fof(fc2_subset_1,axiom,
! [A] : ~ v1_xboole_0(k1_tarski(A)) ).
fof(fc3_lattice2,axiom,
! [A] :
( ( ~ v3_struct_0(A)
& v5_lattices(A)
& l2_lattices(A) )
=> ( v1_relat_1(u2_lattices(A))
& v1_funct_1(u2_lattices(A))
& v1_funct_2(u2_lattices(A),k2_zfmisc_1(u1_struct_0(A),u1_struct_0(A)),u1_struct_0(A))
& v2_binop_1(u2_lattices(A),u1_struct_0(A))
& v1_partfun1(u2_lattices(A),k2_zfmisc_1(u1_struct_0(A),u1_struct_0(A)),u1_struct_0(A)) ) ) ).
fof(fc3_lattices,axiom,
! [A,B,C] :
( ( ~ v1_xboole_0(A)
& v1_funct_1(B)
& v1_funct_2(B,k2_zfmisc_1(A,A),A)
& m1_relset_1(B,k2_zfmisc_1(A,A),A)
& v1_funct_1(C)
& v1_funct_2(C,k2_zfmisc_1(A,A),A)
& m1_relset_1(C,k2_zfmisc_1(A,A),A) )
=> ( ~ v3_struct_0(g3_lattices(A,B,C))
& v3_lattices(g3_lattices(A,B,C)) ) ) ).
fof(fc3_realset1,axiom,
! [A] :
( ~ v1_xboole_0(k1_tarski(A))
& v1_finset_1(k1_tarski(A))
& v1_realset1(k1_tarski(A)) ) ).
fof(fc3_subset_1,axiom,
! [A,B] : ~ v1_xboole_0(k2_tarski(A,B)) ).
fof(fc4_funct_1,axiom,
! [A,B] :
( ( v1_relat_1(A)
& v1_funct_1(A) )
=> ( v1_relat_1(k7_relat_1(A,B))
& v1_funct_1(k7_relat_1(A,B)) ) ) ).
fof(fc4_lattice2,axiom,
! [A] :
( ( ~ v3_struct_0(A)
& v6_lattices(A)
& l1_lattices(A) )
=> ( v1_relat_1(u1_lattices(A))
& v1_funct_1(u1_lattices(A))
& v1_funct_2(u1_lattices(A),k2_zfmisc_1(u1_struct_0(A),u1_struct_0(A)),u1_struct_0(A))
& v1_binop_1(u1_lattices(A),u1_struct_0(A))
& v1_partfun1(u1_lattices(A),k2_zfmisc_1(u1_struct_0(A),u1_struct_0(A)),u1_struct_0(A)) ) ) ).
fof(fc4_subset_1,axiom,
! [A,B] :
( ( ~ v1_xboole_0(A)
& ~ v1_xboole_0(B) )
=> ~ v1_xboole_0(k2_zfmisc_1(A,B)) ) ).
fof(fc5_filter_2,axiom,
! [A,B] :
( ( ~ v3_struct_0(A)
& v10_lattices(A)
& l3_lattices(A)
& ~ v1_xboole_0(B)
& m2_lattice4(B,A) )
=> ( ~ v3_struct_0(k23_filter_2(A,B))
& v3_lattices(k23_filter_2(A,B))
& v4_lattices(k23_filter_2(A,B))
& v5_lattices(k23_filter_2(A,B))
& v6_lattices(k23_filter_2(A,B))
& v7_lattices(k23_filter_2(A,B))
& v8_lattices(k23_filter_2(A,B))
& v9_lattices(k23_filter_2(A,B))
& v10_lattices(k23_filter_2(A,B)) ) ) ).
fof(fc5_lattice2,axiom,
! [A] :
( ( ~ v3_struct_0(A)
& v7_lattices(A)
& l1_lattices(A) )
=> ( v1_relat_1(u1_lattices(A))
& v1_funct_1(u1_lattices(A))
& v1_funct_2(u1_lattices(A),k2_zfmisc_1(u1_struct_0(A),u1_struct_0(A)),u1_struct_0(A))
& v2_binop_1(u1_lattices(A),u1_struct_0(A))
& v1_partfun1(u1_lattices(A),k2_zfmisc_1(u1_struct_0(A),u1_struct_0(A)),u1_struct_0(A)) ) ) ).
fof(free_g3_lattices,axiom,
! [A,B,C] :
( ( v1_funct_1(B)
& v1_funct_2(B,k2_zfmisc_1(A,A),A)
& m1_relset_1(B,k2_zfmisc_1(A,A),A)
& v1_funct_1(C)
& v1_funct_2(C,k2_zfmisc_1(A,A),A)
& m1_relset_1(C,k2_zfmisc_1(A,A),A) )
=> ! [D,E,F] :
( g3_lattices(A,B,C) = g3_lattices(D,E,F)
=> ( A = D
& B = E
& C = F ) ) ) ).
fof(rc1_filter_0,axiom,
? [A] :
( l3_lattices(A)
& ~ v3_struct_0(A)
& v3_lattices(A)
& v4_lattices(A)
& v5_lattices(A)
& v6_lattices(A)
& v7_lattices(A)
& v8_lattices(A)
& v9_lattices(A)
& v10_lattices(A)
& v3_filter_0(A) ) ).
fof(rc1_funct_1,axiom,
? [A] :
( v1_relat_1(A)
& v1_funct_1(A) ) ).
fof(rc1_lattice4,axiom,
! [A] :
( ( ~ v3_struct_0(A)
& v10_lattices(A)
& l3_lattices(A) )
=> ? [B] :
( m2_lattice4(B,A)
& ~ v1_xboole_0(B) ) ) ).
fof(rc1_nat_lat,axiom,
! [A] :
( ( ~ v3_struct_0(A)
& v10_lattices(A)
& l3_lattices(A) )
=> ? [B] :
( m2_nat_lat(B,A)
& ~ v3_struct_0(B)
& v3_lattices(B)
& v4_lattices(B)
& v5_lattices(B)
& v6_lattices(B)
& v7_lattices(B)
& v8_lattices(B)
& v9_lattices(B)
& v10_lattices(B) ) ) ).
fof(rc1_realset1,axiom,
? [A] :
( ~ v1_xboole_0(A)
& v1_realset1(A) ) ).
fof(rc1_subset_1,axiom,
! [A] :
( ~ v1_xboole_0(A)
=> ? [B] :
( m1_subset_1(B,k1_zfmisc_1(A))
& ~ v1_xboole_0(B) ) ) ).
fof(rc1_xboole_0,axiom,
? [A] : v1_xboole_0(A) ).
fof(rc2_funct_1,axiom,
? [A] :
( v1_relat_1(A)
& v1_xboole_0(A)
& v1_funct_1(A) ) ).
fof(rc2_realset1,axiom,
? [A] :
( ~ v1_xboole_0(A)
& ~ v1_realset1(A) ) ).
fof(rc2_subset_1,axiom,
! [A] :
? [B] :
( m1_subset_1(B,k1_zfmisc_1(A))
& v1_xboole_0(B) ) ).
fof(rc2_xboole_0,axiom,
? [A] : ~ v1_xboole_0(A) ).
fof(rc3_funct_1,axiom,
? [A] :
( v1_relat_1(A)
& v1_funct_1(A)
& v2_funct_1(A) ) ).
fof(rc3_lattices,axiom,
? [A] :
( l3_lattices(A)
& v3_lattices(A) ) ).
fof(rc3_struct_0,axiom,
? [A] :
( l1_struct_0(A)
& ~ v3_struct_0(A) ) ).
fof(rc5_struct_0,axiom,
! [A] :
( ( ~ v3_struct_0(A)
& l1_struct_0(A) )
=> ? [B] :
( m1_subset_1(B,k1_zfmisc_1(u1_struct_0(A)))
& ~ v1_xboole_0(B) ) ) ).
fof(rc6_lattices,axiom,
? [A] :
( l3_lattices(A)
& ~ v3_struct_0(A)
& v3_lattices(A) ) ).
fof(rc9_lattices,axiom,
? [A] :
( l3_lattices(A)
& ~ v3_struct_0(A)
& v3_lattices(A)
& v4_lattices(A)
& v5_lattices(A)
& v6_lattices(A)
& v7_lattices(A)
& v8_lattices(A)
& v9_lattices(A)
& v10_lattices(A) ) ).
fof(redefinition_k2_binop_1,axiom,
! [A,B,C,D,E,F] :
( ( ~ v1_xboole_0(A)
& ~ v1_xboole_0(B)
& v1_funct_1(D)
& v1_funct_2(D,k2_zfmisc_1(A,B),C)
& m1_relset_1(D,k2_zfmisc_1(A,B),C)
& m1_subset_1(E,A)
& m1_subset_1(F,B) )
=> k2_binop_1(A,B,C,D,E,F) = k1_binop_1(D,E,F) ) ).
fof(redefinition_k3_lattices,axiom,
! [A,B,C] :
( ( ~ v3_struct_0(A)
& v4_lattices(A)
& l2_lattices(A)
& m1_subset_1(B,u1_struct_0(A))
& m1_subset_1(C,u1_struct_0(A)) )
=> k3_lattices(A,B,C) = k1_lattices(A,B,C) ) ).
fof(redefinition_k4_lattices,axiom,
! [A,B,C] :
( ( ~ v3_struct_0(A)
& v6_lattices(A)
& l1_lattices(A)
& m1_subset_1(B,u1_struct_0(A))
& m1_subset_1(C,u1_struct_0(A)) )
=> k4_lattices(A,B,C) = k2_lattices(A,B,C) ) ).
fof(redefinition_m2_relset_1,axiom,
! [A,B,C] :
( m2_relset_1(C,A,B)
<=> m1_relset_1(C,A,B) ) ).
fof(redefinition_r3_lattices,axiom,
! [A,B,C] :
( ( ~ v3_struct_0(A)
& v6_lattices(A)
& v8_lattices(A)
& v9_lattices(A)
& l3_lattices(A)
& m1_subset_1(B,u1_struct_0(A))
& m1_subset_1(C,u1_struct_0(A)) )
=> ( r3_lattices(A,B,C)
<=> r1_lattices(A,B,C) ) ) ).
fof(reflexivity_r1_tarski,axiom,
! [A,B] : r1_tarski(A,A) ).
fof(reflexivity_r3_lattices,axiom,
! [A,B,C] :
( ( ~ v3_struct_0(A)
& v6_lattices(A)
& v8_lattices(A)
& v9_lattices(A)
& l3_lattices(A)
& m1_subset_1(B,u1_struct_0(A))
& m1_subset_1(C,u1_struct_0(A)) )
=> r3_lattices(A,B,B) ) ).
fof(t1_filter_0,axiom,
! [A] :
( ( ~ v3_struct_0(A)
& v10_lattices(A)
& l3_lattices(A) )
=> ! [B] :
( m1_subset_1(B,u1_struct_0(A))
=> ! [C] :
( m1_subset_1(C,u1_struct_0(A))
=> ! [D] :
( m1_subset_1(D,u1_struct_0(A))
=> ( r3_lattices(A,B,C)
=> ( r3_lattices(A,k3_lattices(A,D,B),k3_lattices(A,D,C))
& r3_lattices(A,k3_lattices(A,B,D),k3_lattices(A,C,D))
& r3_lattices(A,k3_lattices(A,B,D),k3_lattices(A,D,C))
& r3_lattices(A,k3_lattices(A,D,B),k3_lattices(A,C,D)) ) ) ) ) ) ) ).
fof(t1_subset,axiom,
! [A,B] :
( r2_hidden(A,B)
=> m1_subset_1(A,B) ) ).
fof(t21_lattices,axiom,
! [A] :
( ( ~ v3_struct_0(A)
& v8_lattices(A)
& v9_lattices(A)
& l3_lattices(A) )
=> ! [B] :
( m1_subset_1(B,u1_struct_0(A))
=> ! [C] :
( m1_subset_1(C,u1_struct_0(A))
=> ( r1_lattices(A,B,C)
<=> k2_lattices(A,B,C) = B ) ) ) ) ).
fof(t22_lattices,axiom,
! [A] :
( ( ~ v3_struct_0(A)
& v5_lattices(A)
& v6_lattices(A)
& v8_lattices(A)
& v9_lattices(A)
& l3_lattices(A) )
=> ! [B] :
( m1_subset_1(B,u1_struct_0(A))
=> ! [C] :
( m1_subset_1(C,u1_struct_0(A))
=> r1_lattices(A,B,k1_lattices(A,B,C)) ) ) ) ).
fof(t23_lattices,axiom,
! [A] :
( ( ~ v3_struct_0(A)
& v6_lattices(A)
& v8_lattices(A)
& l3_lattices(A) )
=> ! [B] :
( m1_subset_1(B,u1_struct_0(A))
=> ! [C] :
( m1_subset_1(C,u1_struct_0(A))
=> r1_lattices(A,k4_lattices(A,B,C),B) ) ) ) ).
fof(t27_lattices,axiom,
! [A] :
( ( ~ v3_struct_0(A)
& v7_lattices(A)
& v8_lattices(A)
& v9_lattices(A)
& l3_lattices(A) )
=> ! [B] :
( m1_subset_1(B,u1_struct_0(A))
=> ! [C] :
( m1_subset_1(C,u1_struct_0(A))
=> ! [D] :
( m1_subset_1(D,u1_struct_0(A))
=> ( r1_lattices(A,B,C)
=> r1_lattices(A,k2_lattices(A,B,D),k2_lattices(A,C,D)) ) ) ) ) ) ).
fof(t2_filter_0,axiom,
! [A] :
( ( ~ v3_struct_0(A)
& v10_lattices(A)
& l3_lattices(A) )
=> ! [B] :
( m1_subset_1(B,u1_struct_0(A))
=> ! [C] :
( m1_subset_1(C,u1_struct_0(A))
=> ! [D] :
( m1_subset_1(D,u1_struct_0(A))
=> ( r3_lattices(A,B,C)
=> ( r3_lattices(A,k4_lattices(A,B,D),C)
& r3_lattices(A,k4_lattices(A,D,B),C) ) ) ) ) ) ) ).
fof(t2_subset,axiom,
! [A,B] :
( m1_subset_1(A,B)
=> ( v1_xboole_0(B)
| r2_hidden(A,B) ) ) ).
fof(t3_subset,axiom,
! [A,B] :
( m1_subset_1(A,k1_zfmisc_1(B))
<=> r1_tarski(A,B) ) ).
fof(t4_subset,axiom,
! [A,B,C] :
( ( r2_hidden(A,B)
& m1_subset_1(B,k1_zfmisc_1(C)) )
=> m1_subset_1(A,C) ) ).
fof(t5_subset,axiom,
! [A,B,C] :
~ ( r2_hidden(A,B)
& m1_subset_1(B,k1_zfmisc_1(C))
& v1_xboole_0(C) ) ).
fof(t63_filter_2,axiom,
! [A] :
( ( ~ v3_struct_0(A)
& v10_lattices(A)
& l3_lattices(A) )
=> ! [B] :
( m1_subset_1(B,u1_struct_0(A))
=> ! [C] :
( m1_subset_1(C,u1_struct_0(A))
=> ! [D] :
( m1_subset_1(D,u1_struct_0(A))
=> ( r3_lattices(A,B,C)
=> ( r2_hidden(D,k22_filter_2(A,B,C))
<=> ( r3_lattices(A,B,D)
& r3_lattices(A,D,C) ) ) ) ) ) ) ) ).
fof(t69_filter_2,axiom,
! [A] :
( ( ~ v3_struct_0(A)
& v10_lattices(A)
& l3_lattices(A) )
=> ! [B] :
( m2_nat_lat(B,A)
=> ! [C] :
( m1_subset_1(C,u1_struct_0(B))
=> m1_subset_1(C,u1_struct_0(A)) ) ) ) ).
fof(t6_boole,axiom,
! [A] :
( v1_xboole_0(A)
=> A = k1_xboole_0 ) ).
fof(t6_filter_0,axiom,
! [A] :
( ( ~ v3_struct_0(A)
& v10_lattices(A)
& l3_lattices(A) )
=> ! [B] :
( m1_subset_1(B,u1_struct_0(A))
=> ! [C] :
( m1_subset_1(C,u1_struct_0(A))
=> ! [D] :
( m1_subset_1(D,u1_struct_0(A))
=> ( ( r3_lattices(A,B,C)
& r3_lattices(A,D,C) )
=> r3_lattices(A,k3_lattices(A,B,D),C) ) ) ) ) ) ).
fof(t73_filter_2,axiom,
! [A] :
( ( ~ v3_struct_0(A)
& v10_lattices(A)
& l3_lattices(A) )
=> ! [B] :
( ( ~ v1_xboole_0(B)
& m2_lattice4(B,A) )
=> ( u1_struct_0(k23_filter_2(A,B)) = B
& u2_lattices(k23_filter_2(A,B)) = k1_realset1(u2_lattices(A),B)
& u1_lattices(k23_filter_2(A,B)) = k1_realset1(u1_lattices(A),B) ) ) ) ).
fof(t74_filter_2,axiom,
! [A] :
( ( ~ v3_struct_0(A)
& v10_lattices(A)
& l3_lattices(A) )
=> ! [B] :
( ( ~ v1_xboole_0(B)
& m2_lattice4(B,A) )
=> ! [C] :
( m1_subset_1(C,u1_struct_0(A))
=> ! [D] :
( m1_subset_1(D,u1_struct_0(A))
=> ! [E] :
( m1_subset_1(E,u1_struct_0(k23_filter_2(A,B)))
=> ! [F] :
( m1_subset_1(F,u1_struct_0(k23_filter_2(A,B)))
=> ( ( C = E
& D = F )
=> ( k3_lattices(A,C,D) = k3_lattices(k23_filter_2(A,B),E,F)
& k4_lattices(A,C,D) = k4_lattices(k23_filter_2(A,B),E,F) ) ) ) ) ) ) ) ) ).
fof(t75_filter_2,axiom,
! [A] :
( ( ~ v3_struct_0(A)
& v10_lattices(A)
& l3_lattices(A) )
=> ! [B] :
( ( ~ v1_xboole_0(B)
& m2_lattice4(B,A) )
=> ! [C] :
( m1_subset_1(C,u1_struct_0(A))
=> ! [D] :
( m1_subset_1(D,u1_struct_0(A))
=> ! [E] :
( m1_subset_1(E,u1_struct_0(k23_filter_2(A,B)))
=> ! [F] :
( m1_subset_1(F,u1_struct_0(k23_filter_2(A,B)))
=> ( ( C = E
& D = F )
=> ( r3_lattices(A,C,D)
<=> r3_lattices(k23_filter_2(A,B),E,F) ) ) ) ) ) ) ) ) ).
fof(t7_boole,axiom,
! [A,B] :
~ ( r2_hidden(A,B)
& v1_xboole_0(B) ) ).
fof(t7_filter_0,axiom,
! [A] :
( ( ~ v3_struct_0(A)
& v10_lattices(A)
& l3_lattices(A) )
=> ! [B] :
( m1_subset_1(B,u1_struct_0(A))
=> ! [C] :
( m1_subset_1(C,u1_struct_0(A))
=> ! [D] :
( m1_subset_1(D,u1_struct_0(A))
=> ( ( r3_lattices(A,B,C)
& r3_lattices(A,B,D) )
=> r3_lattices(A,B,k4_lattices(A,C,D)) ) ) ) ) ) ).
fof(t8_boole,axiom,
! [A,B] :
~ ( v1_xboole_0(A)
& A != B
& v1_xboole_0(B) ) ).
%------------------------------------------------------------------------------