TPTP Problem File: LAT300+1.p

View Solutions - Solve Problem

%------------------------------------------------------------------------------
% File     : LAT300+1 : TPTP v9.1.0. Released v3.4.0.
% Domain   : Lattice Theory
% Problem  : Ideals T24
% Version  : [Urb08] axioms : Especial.
% English  :

% Refs     : [Ban96] Bancerek (1996), Ideals
%          : [Urb07] Urban (2007), MPTP 0.2: Design, Implementation, and In
%          : [Urb08] Urban (2006), Email to G. Sutcliffe
% Source   : [Urb08]
% Names    : t24_filter_2 [Urb08]

% Status   : Theorem
% Rating   : 0.12 v9.0.0, 0.11 v8.2.0, 0.08 v7.5.0, 0.09 v7.4.0, 0.07 v7.2.0, 0.03 v7.1.0, 0.04 v7.0.0, 0.03 v6.4.0, 0.08 v6.3.0, 0.12 v6.2.0, 0.08 v6.1.0, 0.17 v6.0.0, 0.13 v5.5.0, 0.19 v5.4.0, 0.21 v5.3.0, 0.26 v5.2.0, 0.05 v5.1.0, 0.10 v5.0.0, 0.12 v4.1.0, 0.17 v4.0.0, 0.21 v3.7.0, 0.20 v3.5.0, 0.21 v3.4.0
% Syntax   : Number of formulae    :   44 (  15 unt;   0 def)
%            Number of atoms       :  127 (   2 equ)
%            Maximal formula atoms :   10 (   2 avg)
%            Number of connectives :  115 (  32   ~;   1   |;  51   &)
%                                         (   2 <=>;  29  =>;   0  <=;   0 <~>)
%            Maximal formula depth :   10 (   4 avg)
%            Maximal term depth    :    3 (   1 avg)
%            Number of predicates  :   22 (  20 usr;   1 prp; 0-3 aty)
%            Number of functors    :    3 (   3 usr;   1 con; 0-1 aty)
%            Number of variables   :   66 (  50   !;  16   ?)
% SPC      : FOF_THM_RFO_SEQ

% Comments : Normal version: includes the axioms (which may be theorems from
%            other articles) and background that are possibly necessary.
%          : Translated by MPTP from the Mizar Mathematical Library 4.48.930.
%          : The problem encoding is based on set theory.
%------------------------------------------------------------------------------
fof(t24_filter_2,conjecture,
    ! [A] :
      ( ( ~ v3_struct_0(A)
        & v10_lattices(A)
        & l3_lattices(A) )
     => ! [B] :
          ( m2_filter_2(B,A)
         => ? [C] :
              ( m1_subset_1(C,u1_struct_0(A))
              & r2_hidden(C,B) ) ) ) ).

fof(antisymmetry_r2_hidden,axiom,
    ! [A,B] :
      ( r2_hidden(A,B)
     => ~ r2_hidden(B,A) ) ).

fof(cc1_funct_1,axiom,
    ! [A] :
      ( v1_xboole_0(A)
     => v1_funct_1(A) ) ).

fof(cc1_lattices,axiom,
    ! [A] :
      ( l3_lattices(A)
     => ( ( ~ v3_struct_0(A)
          & v10_lattices(A) )
       => ( ~ v3_struct_0(A)
          & v4_lattices(A)
          & v5_lattices(A)
          & v6_lattices(A)
          & v7_lattices(A)
          & v8_lattices(A)
          & v9_lattices(A) ) ) ) ).

fof(cc2_lattices,axiom,
    ! [A] :
      ( l3_lattices(A)
     => ( ( ~ v3_struct_0(A)
          & v4_lattices(A)
          & v5_lattices(A)
          & v6_lattices(A)
          & v7_lattices(A)
          & v8_lattices(A)
          & v9_lattices(A) )
       => ( ~ v3_struct_0(A)
          & v10_lattices(A) ) ) ) ).

fof(dt_k1_xboole_0,axiom,
    $true ).

fof(dt_k1_zfmisc_1,axiom,
    $true ).

fof(dt_l1_lattices,axiom,
    ! [A] :
      ( l1_lattices(A)
     => l1_struct_0(A) ) ).

fof(dt_l1_struct_0,axiom,
    $true ).

fof(dt_l2_lattices,axiom,
    ! [A] :
      ( l2_lattices(A)
     => l1_struct_0(A) ) ).

fof(dt_l3_lattices,axiom,
    ! [A] :
      ( l3_lattices(A)
     => ( l1_lattices(A)
        & l2_lattices(A) ) ) ).

fof(dt_m1_struct_0,axiom,
    ! [A,B] :
      ( ( ~ v3_struct_0(A)
        & l1_struct_0(A)
        & ~ v1_xboole_0(B)
        & m1_subset_1(B,k1_zfmisc_1(u1_struct_0(A))) )
     => ! [C] :
          ( m1_struct_0(C,A,B)
         => m1_subset_1(C,u1_struct_0(A)) ) ) ).

fof(dt_m1_subset_1,axiom,
    $true ).

fof(dt_m2_filter_2,axiom,
    ! [A] :
      ( ( ~ v3_struct_0(A)
        & v10_lattices(A)
        & l3_lattices(A) )
     => ! [B] :
          ( m2_filter_2(B,A)
         => ( ~ v1_xboole_0(B)
            & m2_lattice4(B,A) ) ) ) ).

fof(dt_m2_lattice4,axiom,
    ! [A] :
      ( ( ~ v3_struct_0(A)
        & v10_lattices(A)
        & l3_lattices(A) )
     => ! [B] :
          ( m2_lattice4(B,A)
         => m1_subset_1(B,k1_zfmisc_1(u1_struct_0(A))) ) ) ).

fof(dt_u1_struct_0,axiom,
    $true ).

fof(existence_l1_lattices,axiom,
    ? [A] : l1_lattices(A) ).

fof(existence_l1_struct_0,axiom,
    ? [A] : l1_struct_0(A) ).

fof(existence_l2_lattices,axiom,
    ? [A] : l2_lattices(A) ).

fof(existence_l3_lattices,axiom,
    ? [A] : l3_lattices(A) ).

fof(existence_m1_struct_0,axiom,
    ! [A,B] :
      ( ( ~ v3_struct_0(A)
        & l1_struct_0(A)
        & ~ v1_xboole_0(B)
        & m1_subset_1(B,k1_zfmisc_1(u1_struct_0(A))) )
     => ? [C] : m1_struct_0(C,A,B) ) ).

fof(existence_m1_subset_1,axiom,
    ! [A] :
    ? [B] : m1_subset_1(B,A) ).

fof(existence_m2_filter_2,axiom,
    ! [A] :
      ( ( ~ v3_struct_0(A)
        & v10_lattices(A)
        & l3_lattices(A) )
     => ? [B] : m2_filter_2(B,A) ) ).

fof(existence_m2_lattice4,axiom,
    ! [A] :
      ( ( ~ v3_struct_0(A)
        & v10_lattices(A)
        & l3_lattices(A) )
     => ? [B] : m2_lattice4(B,A) ) ).

fof(fc1_struct_0,axiom,
    ! [A] :
      ( ( ~ v3_struct_0(A)
        & l1_struct_0(A) )
     => ~ v1_xboole_0(u1_struct_0(A)) ) ).

fof(fc1_subset_1,axiom,
    ! [A] : ~ v1_xboole_0(k1_zfmisc_1(A)) ).

fof(fc1_xboole_0,axiom,
    v1_xboole_0(k1_xboole_0) ).

fof(rc1_lattice4,axiom,
    ! [A] :
      ( ( ~ v3_struct_0(A)
        & v10_lattices(A)
        & l3_lattices(A) )
     => ? [B] :
          ( m2_lattice4(B,A)
          & ~ v1_xboole_0(B) ) ) ).

fof(rc1_subset_1,axiom,
    ! [A] :
      ( ~ v1_xboole_0(A)
     => ? [B] :
          ( m1_subset_1(B,k1_zfmisc_1(A))
          & ~ v1_xboole_0(B) ) ) ).

fof(rc1_xboole_0,axiom,
    ? [A] : v1_xboole_0(A) ).

fof(rc2_subset_1,axiom,
    ! [A] :
    ? [B] :
      ( m1_subset_1(B,k1_zfmisc_1(A))
      & v1_xboole_0(B) ) ).

fof(rc2_xboole_0,axiom,
    ? [A] : ~ v1_xboole_0(A) ).

fof(rc3_struct_0,axiom,
    ? [A] :
      ( l1_struct_0(A)
      & ~ v3_struct_0(A) ) ).

fof(rc5_struct_0,axiom,
    ! [A] :
      ( ( ~ v3_struct_0(A)
        & l1_struct_0(A) )
     => ? [B] :
          ( m1_subset_1(B,k1_zfmisc_1(u1_struct_0(A)))
          & ~ v1_xboole_0(B) ) ) ).

fof(redefinition_m1_struct_0,axiom,
    ! [A,B] :
      ( ( ~ v3_struct_0(A)
        & l1_struct_0(A)
        & ~ v1_xboole_0(B)
        & m1_subset_1(B,k1_zfmisc_1(u1_struct_0(A))) )
     => ! [C] :
          ( m1_struct_0(C,A,B)
        <=> m1_subset_1(C,B) ) ) ).

fof(reflexivity_r1_tarski,axiom,
    ! [A,B] : r1_tarski(A,A) ).

fof(t1_subset,axiom,
    ! [A,B] :
      ( r2_hidden(A,B)
     => m1_subset_1(A,B) ) ).

fof(t2_subset,axiom,
    ! [A,B] :
      ( m1_subset_1(A,B)
     => ( v1_xboole_0(B)
        | r2_hidden(A,B) ) ) ).

fof(t3_subset,axiom,
    ! [A,B] :
      ( m1_subset_1(A,k1_zfmisc_1(B))
    <=> r1_tarski(A,B) ) ).

fof(t4_subset,axiom,
    ! [A,B,C] :
      ( ( r2_hidden(A,B)
        & m1_subset_1(B,k1_zfmisc_1(C)) )
     => m1_subset_1(A,C) ) ).

fof(t5_subset,axiom,
    ! [A,B,C] :
      ~ ( r2_hidden(A,B)
        & m1_subset_1(B,k1_zfmisc_1(C))
        & v1_xboole_0(C) ) ).

fof(t6_boole,axiom,
    ! [A] :
      ( v1_xboole_0(A)
     => A = k1_xboole_0 ) ).

fof(t7_boole,axiom,
    ! [A,B] :
      ~ ( r2_hidden(A,B)
        & v1_xboole_0(B) ) ).

fof(t8_boole,axiom,
    ! [A,B] :
      ~ ( v1_xboole_0(A)
        & A != B
        & v1_xboole_0(B) ) ).

%------------------------------------------------------------------------------