TPTP Problem File: LAT294+1.p
View Solutions
- Solve Problem
%------------------------------------------------------------------------------
% File : LAT294+1 : TPTP v9.0.0. Released v3.4.0.
% Domain : Lattice Theory
% Problem : Ideals T04
% Version : [Urb08] axioms : Especial.
% English :
% Refs : [Ban96] Bancerek (1996), Ideals
% : [Urb07] Urban (2007), MPTP 0.2: Design, Implementation, and In
% : [Urb08] Urban (2006), Email to G. Sutcliffe
% Source : [Urb08]
% Names : t4_filter_2 [Urb08]
% Status : Theorem
% Rating : 0.24 v9.0.0, 0.28 v8.1.0, 0.25 v7.5.0, 0.31 v7.4.0, 0.20 v7.3.0, 0.21 v7.2.0, 0.17 v7.1.0, 0.22 v7.0.0, 0.20 v6.4.0, 0.27 v6.3.0, 0.25 v6.2.0, 0.36 v6.1.0, 0.47 v6.0.0, 0.35 v5.5.0, 0.44 v5.4.0, 0.46 v5.3.0, 0.52 v5.2.0, 0.35 v5.1.0, 0.33 v5.0.0, 0.29 v4.1.0, 0.35 v4.0.1, 0.39 v4.0.0, 0.42 v3.7.0, 0.45 v3.5.0, 0.47 v3.4.0
% Syntax : Number of formulae : 42 ( 14 unt; 0 def)
% Number of atoms : 129 ( 7 equ)
% Maximal formula atoms : 21 ( 3 avg)
% Number of connectives : 103 ( 16 ~; 1 |; 49 &)
% ( 3 <=>; 34 =>; 0 <=; 0 <~>)
% Maximal formula depth : 16 ( 4 avg)
% Maximal term depth : 3 ( 1 avg)
% Number of predicates : 15 ( 13 usr; 1 prp; 0-3 aty)
% Number of functors : 5 ( 5 usr; 1 con; 0-2 aty)
% Number of variables : 77 ( 67 !; 10 ?)
% SPC : FOF_THM_RFO_SEQ
% Comments : Normal version: includes the axioms (which may be theorems from
% other articles) and background that are possibly necessary.
% : Translated by MPTP from the Mizar Mathematical Library 4.48.930.
% : The problem encoding is based on set theory.
%------------------------------------------------------------------------------
fof(t4_filter_2,conjecture,
! [A] :
( ~ v1_xboole_0(A)
=> ! [B] :
( ( ~ v1_xboole_0(B)
& m1_subset_1(B,k1_zfmisc_1(A)) )
=> ! [C] :
( ( v1_funct_1(C)
& v1_funct_2(C,k2_zfmisc_1(A,A),A)
& m2_relset_1(C,k2_zfmisc_1(A,A),A) )
=> ! [D] :
( ( v1_funct_1(D)
& v1_funct_2(D,k2_zfmisc_1(A,A),A)
& m2_relset_1(D,k2_zfmisc_1(A,A),A) )
=> ! [E] :
( ( v1_funct_1(E)
& v1_funct_2(E,k2_zfmisc_1(B,B),B)
& m2_relset_1(E,k2_zfmisc_1(B,B),B) )
=> ! [F] :
( ( v1_funct_1(F)
& v1_funct_2(F,k2_zfmisc_1(B,B),B)
& m2_relset_1(F,k2_zfmisc_1(B,B),B) )
=> ( ( E = k1_realset1(C,B)
& F = k1_realset1(D,B)
& r6_binop_1(A,C,D) )
=> r6_binop_1(B,E,F) ) ) ) ) ) ) ) ).
fof(antisymmetry_r2_hidden,axiom,
! [A,B] :
( r2_hidden(A,B)
=> ~ r2_hidden(B,A) ) ).
fof(cc1_funct_1,axiom,
! [A] :
( v1_xboole_0(A)
=> v1_funct_1(A) ) ).
fof(cc1_relset_1,axiom,
! [A,B,C] :
( m1_subset_1(C,k1_zfmisc_1(k2_zfmisc_1(A,B)))
=> v1_relat_1(C) ) ).
fof(cc2_funct_1,axiom,
! [A] :
( ( v1_relat_1(A)
& v1_xboole_0(A)
& v1_funct_1(A) )
=> ( v1_relat_1(A)
& v1_funct_1(A)
& v2_funct_1(A) ) ) ).
fof(d11_binop_1,axiom,
! [A,B] :
( ( v1_funct_1(B)
& v1_funct_2(B,k2_zfmisc_1(A,A),A)
& m2_relset_1(B,k2_zfmisc_1(A,A),A) )
=> ! [C] :
( ( v1_funct_1(C)
& v1_funct_2(C,k2_zfmisc_1(A,A),A)
& m2_relset_1(C,k2_zfmisc_1(A,A),A) )
=> ( r6_binop_1(A,B,C)
<=> ( r4_binop_1(A,B,C)
& r5_binop_1(A,B,C) ) ) ) ) ).
fof(d3_realset1,axiom,
! [A] :
( v1_relat_1(A)
=> ! [B] : k1_realset1(A,B) = k7_relat_1(A,k2_zfmisc_1(B,B)) ) ).
fof(dt_k1_realset1,axiom,
$true ).
fof(dt_k1_xboole_0,axiom,
$true ).
fof(dt_k1_zfmisc_1,axiom,
$true ).
fof(dt_k2_zfmisc_1,axiom,
$true ).
fof(dt_k7_relat_1,axiom,
! [A,B] :
( v1_relat_1(A)
=> v1_relat_1(k7_relat_1(A,B)) ) ).
fof(dt_m1_relset_1,axiom,
$true ).
fof(dt_m1_subset_1,axiom,
$true ).
fof(dt_m2_relset_1,axiom,
! [A,B,C] :
( m2_relset_1(C,A,B)
=> m1_subset_1(C,k1_zfmisc_1(k2_zfmisc_1(A,B))) ) ).
fof(existence_m1_relset_1,axiom,
! [A,B] :
? [C] : m1_relset_1(C,A,B) ).
fof(existence_m1_subset_1,axiom,
! [A] :
? [B] : m1_subset_1(B,A) ).
fof(existence_m2_relset_1,axiom,
! [A,B] :
? [C] : m2_relset_1(C,A,B) ).
fof(fc1_realset1,axiom,
! [A,B] :
( v1_relat_1(A)
=> v1_relat_1(k1_realset1(A,B)) ) ).
fof(fc1_subset_1,axiom,
! [A] : ~ v1_xboole_0(k1_zfmisc_1(A)) ).
fof(fc1_xboole_0,axiom,
v1_xboole_0(k1_xboole_0) ).
fof(fc2_realset1,axiom,
! [A,B] :
( ( v1_relat_1(A)
& v1_funct_1(A) )
=> ( v1_relat_1(k1_realset1(A,B))
& v1_funct_1(k1_realset1(A,B)) ) ) ).
fof(fc4_funct_1,axiom,
! [A,B] :
( ( v1_relat_1(A)
& v1_funct_1(A) )
=> ( v1_relat_1(k7_relat_1(A,B))
& v1_funct_1(k7_relat_1(A,B)) ) ) ).
fof(fc4_subset_1,axiom,
! [A,B] :
( ( ~ v1_xboole_0(A)
& ~ v1_xboole_0(B) )
=> ~ v1_xboole_0(k2_zfmisc_1(A,B)) ) ).
fof(rc1_funct_1,axiom,
? [A] :
( v1_relat_1(A)
& v1_funct_1(A) ) ).
fof(rc1_subset_1,axiom,
! [A] :
( ~ v1_xboole_0(A)
=> ? [B] :
( m1_subset_1(B,k1_zfmisc_1(A))
& ~ v1_xboole_0(B) ) ) ).
fof(rc1_xboole_0,axiom,
? [A] : v1_xboole_0(A) ).
fof(rc2_funct_1,axiom,
? [A] :
( v1_relat_1(A)
& v1_xboole_0(A)
& v1_funct_1(A) ) ).
fof(rc2_subset_1,axiom,
! [A] :
? [B] :
( m1_subset_1(B,k1_zfmisc_1(A))
& v1_xboole_0(B) ) ).
fof(rc2_xboole_0,axiom,
? [A] : ~ v1_xboole_0(A) ).
fof(rc3_funct_1,axiom,
? [A] :
( v1_relat_1(A)
& v1_funct_1(A)
& v2_funct_1(A) ) ).
fof(redefinition_m2_relset_1,axiom,
! [A,B,C] :
( m2_relset_1(C,A,B)
<=> m1_relset_1(C,A,B) ) ).
fof(reflexivity_r1_tarski,axiom,
! [A,B] : r1_tarski(A,A) ).
fof(t1_subset,axiom,
! [A,B] :
( r2_hidden(A,B)
=> m1_subset_1(A,B) ) ).
fof(t2_subset,axiom,
! [A,B] :
( m1_subset_1(A,B)
=> ( v1_xboole_0(B)
| r2_hidden(A,B) ) ) ).
fof(t3_filter_2,axiom,
! [A] :
( ~ v1_xboole_0(A)
=> ! [B] :
( ( ~ v1_xboole_0(B)
& m1_subset_1(B,k1_zfmisc_1(A)) )
=> ! [C] :
( ( v1_funct_1(C)
& v1_funct_2(C,k2_zfmisc_1(A,A),A)
& m2_relset_1(C,k2_zfmisc_1(A,A),A) )
=> ! [D] :
( ( v1_funct_1(D)
& v1_funct_2(D,k2_zfmisc_1(A,A),A)
& m2_relset_1(D,k2_zfmisc_1(A,A),A) )
=> ! [E] :
( ( v1_funct_1(E)
& v1_funct_2(E,k2_zfmisc_1(B,B),B)
& m2_relset_1(E,k2_zfmisc_1(B,B),B) )
=> ! [F] :
( ( v1_funct_1(F)
& v1_funct_2(F,k2_zfmisc_1(B,B),B)
& m2_relset_1(F,k2_zfmisc_1(B,B),B) )
=> ( ( E = k1_realset1(C,B)
& F = k1_realset1(D,B) )
=> ( ( r4_binop_1(A,C,D)
=> r4_binop_1(B,E,F) )
& ( r5_binop_1(A,C,D)
=> r5_binop_1(B,E,F) ) ) ) ) ) ) ) ) ) ).
fof(t3_subset,axiom,
! [A,B] :
( m1_subset_1(A,k1_zfmisc_1(B))
<=> r1_tarski(A,B) ) ).
fof(t4_subset,axiom,
! [A,B,C] :
( ( r2_hidden(A,B)
& m1_subset_1(B,k1_zfmisc_1(C)) )
=> m1_subset_1(A,C) ) ).
fof(t5_subset,axiom,
! [A,B,C] :
~ ( r2_hidden(A,B)
& m1_subset_1(B,k1_zfmisc_1(C))
& v1_xboole_0(C) ) ).
fof(t6_boole,axiom,
! [A] :
( v1_xboole_0(A)
=> A = k1_xboole_0 ) ).
fof(t7_boole,axiom,
! [A,B] :
~ ( r2_hidden(A,B)
& v1_xboole_0(B) ) ).
fof(t8_boole,axiom,
! [A,B] :
~ ( v1_xboole_0(A)
& A != B
& v1_xboole_0(B) ) ).
%------------------------------------------------------------------------------