TPTP Problem File: LAT293+1.p
View Solutions
- Solve Problem
%------------------------------------------------------------------------------
% File : LAT293+1 : TPTP v9.0.0. Released v3.4.0.
% Domain : Lattice Theory
% Problem : Ideals T02
% Version : [Urb08] axioms : Especial.
% English :
% Refs : [Ban96] Bancerek (1996), Ideals
% : [Urb07] Urban (2007), MPTP 0.2: Design, Implementation, and In
% : [Urb08] Urban (2006), Email to G. Sutcliffe
% Source : [Urb08]
% Names : t2_filter_2 [Urb08]
% Status : Theorem
% Rating : 0.91 v9.0.0, 0.92 v8.2.0, 0.94 v7.5.0, 0.97 v7.1.0, 0.96 v7.0.0, 0.97 v6.4.0, 1.00 v6.0.0, 0.96 v5.5.0, 1.00 v3.7.0, 0.95 v3.5.0, 1.00 v3.4.0
% Syntax : Number of formulae : 71 ( 24 unt; 0 def)
% Number of atoms : 208 ( 23 equ)
% Maximal formula atoms : 19 ( 2 avg)
% Number of connectives : 175 ( 38 ~; 2 |; 70 &)
% ( 8 <=>; 57 =>; 0 <=; 0 <~>)
% Maximal formula depth : 17 ( 5 avg)
% Maximal term depth : 3 ( 1 avg)
% Number of predicates : 18 ( 16 usr; 1 prp; 0-3 aty)
% Number of functors : 15 ( 15 usr; 1 con; 0-6 aty)
% Number of variables : 143 ( 130 !; 13 ?)
% SPC : FOF_THM_RFO_SEQ
% Comments : Normal version: includes the axioms (which may be theorems from
% other articles) and background that are possibly necessary.
% : Translated by MPTP from the Mizar Mathematical Library 4.48.930.
% : The problem encoding is based on set theory.
%------------------------------------------------------------------------------
fof(t2_filter_2,conjecture,
! [A] :
( ~ v1_xboole_0(A)
=> ! [B] :
( ( ~ v1_xboole_0(B)
& m1_subset_1(B,k1_zfmisc_1(A)) )
=> ! [C] :
( ( v1_funct_1(C)
& v1_funct_2(C,k2_zfmisc_1(A,A),A)
& m2_relset_1(C,k2_zfmisc_1(A,A),A) )
=> ! [D] :
( ( v1_funct_1(D)
& v1_funct_2(D,k2_zfmisc_1(B,B),B)
& m2_relset_1(D,k2_zfmisc_1(B,B),B) )
=> ! [E] :
( m1_subset_1(E,A)
=> ! [F] :
( m2_subset_1(F,A,B)
=> ( ( D = k1_realset1(C,B)
& F = E )
=> ( ( r1_binop_1(A,E,C)
=> r1_binop_1(B,F,D) )
& ( r2_binop_1(A,E,C)
=> r2_binop_1(B,F,D) )
& ( r3_binop_1(A,E,C)
=> r3_binop_1(B,F,D) ) ) ) ) ) ) ) ) ) ).
fof(antisymmetry_r2_hidden,axiom,
! [A,B] :
( r2_hidden(A,B)
=> ~ r2_hidden(B,A) ) ).
fof(cc1_funct_1,axiom,
! [A] :
( v1_xboole_0(A)
=> v1_funct_1(A) ) ).
fof(cc1_realset1,axiom,
! [A] :
( ~ v1_realset1(A)
=> ~ v1_xboole_0(A) ) ).
fof(cc1_relset_1,axiom,
! [A,B,C] :
( m1_subset_1(C,k1_zfmisc_1(k2_zfmisc_1(A,B)))
=> v1_relat_1(C) ) ).
fof(cc2_funct_1,axiom,
! [A] :
( ( v1_relat_1(A)
& v1_xboole_0(A)
& v1_funct_1(A) )
=> ( v1_relat_1(A)
& v1_funct_1(A)
& v2_funct_1(A) ) ) ).
fof(commutativity_k2_tarski,axiom,
! [A,B] : k2_tarski(A,B) = k2_tarski(B,A) ).
fof(d16_binop_1,axiom,
! [A] :
( ~ v1_xboole_0(A)
=> ! [B] :
( m1_subset_1(B,A)
=> ! [C] :
( ( v1_funct_1(C)
& v1_funct_2(C,k2_zfmisc_1(A,A),A)
& m2_relset_1(C,k2_zfmisc_1(A,A),A) )
=> ( r1_binop_1(A,B,C)
<=> ! [D] :
( m1_subset_1(D,A)
=> k2_binop_1(A,A,A,C,B,D) = D ) ) ) ) ) ).
fof(d17_binop_1,axiom,
! [A] :
( ~ v1_xboole_0(A)
=> ! [B] :
( m1_subset_1(B,A)
=> ! [C] :
( ( v1_funct_1(C)
& v1_funct_2(C,k2_zfmisc_1(A,A),A)
& m2_relset_1(C,k2_zfmisc_1(A,A),A) )
=> ( r2_binop_1(A,B,C)
<=> ! [D] :
( m1_subset_1(D,A)
=> k2_binop_1(A,A,A,C,D,B) = D ) ) ) ) ) ).
fof(d1_binop_1,axiom,
! [A] :
( ( v1_relat_1(A)
& v1_funct_1(A) )
=> ! [B,C] : k1_binop_1(A,B,C) = k1_funct_1(A,k4_tarski(B,C)) ) ).
fof(d1_funct_2,axiom,
! [A,B,C] :
( m2_relset_1(C,A,B)
=> ( ( ( B = k1_xboole_0
=> A = k1_xboole_0 )
=> ( v1_funct_2(C,A,B)
<=> A = k4_relset_1(A,B,C) ) )
& ( B = k1_xboole_0
=> ( A = k1_xboole_0
| ( v1_funct_2(C,A,B)
<=> C = k1_xboole_0 ) ) ) ) ) ).
fof(d3_realset1,axiom,
! [A] :
( v1_relat_1(A)
=> ! [B] : k1_realset1(A,B) = k7_relat_1(A,k2_zfmisc_1(B,B)) ) ).
fof(d5_tarski,axiom,
! [A,B] : k4_tarski(A,B) = k2_tarski(k2_tarski(A,B),k1_tarski(A)) ).
fof(dt_k12_mcart_1,axiom,
! [A,B,C,D] :
( ( m1_subset_1(C,k1_zfmisc_1(A))
& m1_subset_1(D,k1_zfmisc_1(B)) )
=> m1_subset_1(k12_mcart_1(A,B,C,D),k1_zfmisc_1(k2_zfmisc_1(A,B))) ) ).
fof(dt_k1_binop_1,axiom,
$true ).
fof(dt_k1_domain_1,axiom,
! [A,B,C,D] :
( ( ~ v1_xboole_0(A)
& ~ v1_xboole_0(B)
& m1_subset_1(C,A)
& m1_subset_1(D,B) )
=> m1_subset_1(k1_domain_1(A,B,C,D),k2_zfmisc_1(A,B)) ) ).
fof(dt_k1_funct_1,axiom,
$true ).
fof(dt_k1_realset1,axiom,
$true ).
fof(dt_k1_relat_1,axiom,
$true ).
fof(dt_k1_tarski,axiom,
$true ).
fof(dt_k1_xboole_0,axiom,
$true ).
fof(dt_k1_zfmisc_1,axiom,
$true ).
fof(dt_k2_binop_1,axiom,
! [A,B,C,D,E,F] :
( ( ~ v1_xboole_0(A)
& ~ v1_xboole_0(B)
& v1_funct_1(D)
& v1_funct_2(D,k2_zfmisc_1(A,B),C)
& m1_relset_1(D,k2_zfmisc_1(A,B),C)
& m1_subset_1(E,A)
& m1_subset_1(F,B) )
=> m1_subset_1(k2_binop_1(A,B,C,D,E,F),C) ) ).
fof(dt_k2_tarski,axiom,
$true ).
fof(dt_k2_zfmisc_1,axiom,
$true ).
fof(dt_k4_relset_1,axiom,
! [A,B,C] :
( m1_relset_1(C,A,B)
=> m1_subset_1(k4_relset_1(A,B,C),k1_zfmisc_1(A)) ) ).
fof(dt_k4_tarski,axiom,
$true ).
fof(dt_k7_relat_1,axiom,
! [A,B] :
( v1_relat_1(A)
=> v1_relat_1(k7_relat_1(A,B)) ) ).
fof(dt_m1_relset_1,axiom,
$true ).
fof(dt_m1_subset_1,axiom,
$true ).
fof(dt_m2_relset_1,axiom,
! [A,B,C] :
( m2_relset_1(C,A,B)
=> m1_subset_1(C,k1_zfmisc_1(k2_zfmisc_1(A,B))) ) ).
fof(dt_m2_subset_1,axiom,
! [A,B] :
( ( ~ v1_xboole_0(A)
& ~ v1_xboole_0(B)
& m1_subset_1(B,k1_zfmisc_1(A)) )
=> ! [C] :
( m2_subset_1(C,A,B)
=> m1_subset_1(C,A) ) ) ).
fof(existence_m1_relset_1,axiom,
! [A,B] :
? [C] : m1_relset_1(C,A,B) ).
fof(existence_m1_subset_1,axiom,
! [A] :
? [B] : m1_subset_1(B,A) ).
fof(existence_m2_relset_1,axiom,
! [A,B] :
? [C] : m2_relset_1(C,A,B) ).
fof(existence_m2_subset_1,axiom,
! [A,B] :
( ( ~ v1_xboole_0(A)
& ~ v1_xboole_0(B)
& m1_subset_1(B,k1_zfmisc_1(A)) )
=> ? [C] : m2_subset_1(C,A,B) ) ).
fof(fc1_realset1,axiom,
! [A,B] :
( v1_relat_1(A)
=> v1_relat_1(k1_realset1(A,B)) ) ).
fof(fc1_subset_1,axiom,
! [A] : ~ v1_xboole_0(k1_zfmisc_1(A)) ).
fof(fc1_xboole_0,axiom,
v1_xboole_0(k1_xboole_0) ).
fof(fc2_realset1,axiom,
! [A,B] :
( ( v1_relat_1(A)
& v1_funct_1(A) )
=> ( v1_relat_1(k1_realset1(A,B))
& v1_funct_1(k1_realset1(A,B)) ) ) ).
fof(fc2_subset_1,axiom,
! [A] : ~ v1_xboole_0(k1_tarski(A)) ).
fof(fc3_realset1,axiom,
! [A] :
( ~ v1_xboole_0(k1_tarski(A))
& v1_finset_1(k1_tarski(A))
& v1_realset1(k1_tarski(A)) ) ).
fof(fc3_subset_1,axiom,
! [A,B] : ~ v1_xboole_0(k2_tarski(A,B)) ).
fof(fc4_funct_1,axiom,
! [A,B] :
( ( v1_relat_1(A)
& v1_funct_1(A) )
=> ( v1_relat_1(k7_relat_1(A,B))
& v1_funct_1(k7_relat_1(A,B)) ) ) ).
fof(fc4_subset_1,axiom,
! [A,B] :
( ( ~ v1_xboole_0(A)
& ~ v1_xboole_0(B) )
=> ~ v1_xboole_0(k2_zfmisc_1(A,B)) ) ).
fof(rc1_funct_1,axiom,
? [A] :
( v1_relat_1(A)
& v1_funct_1(A) ) ).
fof(rc1_realset1,axiom,
? [A] :
( ~ v1_xboole_0(A)
& v1_realset1(A) ) ).
fof(rc1_subset_1,axiom,
! [A] :
( ~ v1_xboole_0(A)
=> ? [B] :
( m1_subset_1(B,k1_zfmisc_1(A))
& ~ v1_xboole_0(B) ) ) ).
fof(rc1_xboole_0,axiom,
? [A] : v1_xboole_0(A) ).
fof(rc2_funct_1,axiom,
? [A] :
( v1_relat_1(A)
& v1_xboole_0(A)
& v1_funct_1(A) ) ).
fof(rc2_realset1,axiom,
? [A] :
( ~ v1_xboole_0(A)
& ~ v1_realset1(A) ) ).
fof(rc2_subset_1,axiom,
! [A] :
? [B] :
( m1_subset_1(B,k1_zfmisc_1(A))
& v1_xboole_0(B) ) ).
fof(rc2_xboole_0,axiom,
? [A] : ~ v1_xboole_0(A) ).
fof(rc3_funct_1,axiom,
? [A] :
( v1_relat_1(A)
& v1_funct_1(A)
& v2_funct_1(A) ) ).
fof(redefinition_k12_mcart_1,axiom,
! [A,B,C,D] :
( ( m1_subset_1(C,k1_zfmisc_1(A))
& m1_subset_1(D,k1_zfmisc_1(B)) )
=> k12_mcart_1(A,B,C,D) = k2_zfmisc_1(C,D) ) ).
fof(redefinition_k1_domain_1,axiom,
! [A,B,C,D] :
( ( ~ v1_xboole_0(A)
& ~ v1_xboole_0(B)
& m1_subset_1(C,A)
& m1_subset_1(D,B) )
=> k1_domain_1(A,B,C,D) = k4_tarski(C,D) ) ).
fof(redefinition_k2_binop_1,axiom,
! [A,B,C,D,E,F] :
( ( ~ v1_xboole_0(A)
& ~ v1_xboole_0(B)
& v1_funct_1(D)
& v1_funct_2(D,k2_zfmisc_1(A,B),C)
& m1_relset_1(D,k2_zfmisc_1(A,B),C)
& m1_subset_1(E,A)
& m1_subset_1(F,B) )
=> k2_binop_1(A,B,C,D,E,F) = k1_binop_1(D,E,F) ) ).
fof(redefinition_k4_relset_1,axiom,
! [A,B,C] :
( m1_relset_1(C,A,B)
=> k4_relset_1(A,B,C) = k1_relat_1(C) ) ).
fof(redefinition_m2_relset_1,axiom,
! [A,B,C] :
( m2_relset_1(C,A,B)
<=> m1_relset_1(C,A,B) ) ).
fof(redefinition_m2_subset_1,axiom,
! [A,B] :
( ( ~ v1_xboole_0(A)
& ~ v1_xboole_0(B)
& m1_subset_1(B,k1_zfmisc_1(A)) )
=> ! [C] :
( m2_subset_1(C,A,B)
<=> m1_subset_1(C,B) ) ) ).
fof(reflexivity_r1_tarski,axiom,
! [A,B] : r1_tarski(A,A) ).
fof(t11_binop_1,axiom,
! [A,B] :
( ( v1_funct_1(B)
& v1_funct_2(B,k2_zfmisc_1(A,A),A)
& m2_relset_1(B,k2_zfmisc_1(A,A),A) )
=> ! [C] :
( m1_subset_1(C,A)
=> ( r3_binop_1(A,C,B)
<=> ! [D] :
( m1_subset_1(D,A)
=> ( k1_binop_1(B,C,D) = D
& k1_binop_1(B,D,C) = D ) ) ) ) ) ).
fof(t1_subset,axiom,
! [A,B] :
( r2_hidden(A,B)
=> m1_subset_1(A,B) ) ).
fof(t2_subset,axiom,
! [A,B] :
( m1_subset_1(A,B)
=> ( v1_xboole_0(B)
| r2_hidden(A,B) ) ) ).
fof(t3_subset,axiom,
! [A,B] :
( m1_subset_1(A,k1_zfmisc_1(B))
<=> r1_tarski(A,B) ) ).
fof(t4_subset,axiom,
! [A,B,C] :
( ( r2_hidden(A,B)
& m1_subset_1(B,k1_zfmisc_1(C)) )
=> m1_subset_1(A,C) ) ).
fof(t5_subset,axiom,
! [A,B,C] :
~ ( r2_hidden(A,B)
& m1_subset_1(B,k1_zfmisc_1(C))
& v1_xboole_0(C) ) ).
fof(t6_boole,axiom,
! [A] :
( v1_xboole_0(A)
=> A = k1_xboole_0 ) ).
fof(t70_funct_1,axiom,
! [A,B,C] :
( ( v1_relat_1(C)
& v1_funct_1(C) )
=> ( r2_hidden(B,k1_relat_1(k7_relat_1(C,A)))
=> k1_funct_1(k7_relat_1(C,A),B) = k1_funct_1(C,B) ) ) ).
fof(t7_boole,axiom,
! [A,B] :
~ ( r2_hidden(A,B)
& v1_xboole_0(B) ) ).
fof(t8_boole,axiom,
! [A,B] :
~ ( v1_xboole_0(A)
& A != B
& v1_xboole_0(B) ) ).
%------------------------------------------------------------------------------