TPTP Problem File: LAT288+1.p
View Solutions
- Solve Problem
%------------------------------------------------------------------------------
% File : LAT288+1 : TPTP v9.0.0. Released v3.4.0.
% Domain : Lattice Theory
% Problem : Representation Theorem for Boolean Algebras T19
% Version : [Urb08] axioms : Especial.
% English :
% Refs : [Wal93] Walijewski (1993), Representation Theorem for Boolean
% : [Urb07] Urban (2007), MPTP 0.2: Design, Implementation, and In
% : [Urb08] Urban (2006), Email to G. Sutcliffe
% Source : [Urb08]
% Names : t19_lopclset [Urb08]
% Status : Theorem
% Rating : 0.36 v9.0.0, 0.44 v8.2.0, 0.42 v8.1.0, 0.39 v7.5.0, 0.41 v7.4.0, 0.33 v7.3.0, 0.34 v7.2.0, 0.31 v7.1.0, 0.26 v7.0.0, 0.37 v6.4.0, 0.38 v6.3.0, 0.33 v6.2.0, 0.40 v6.1.0, 0.53 v6.0.0, 0.52 v5.5.0, 0.56 v5.4.0, 0.61 v5.3.0, 0.63 v5.2.0, 0.50 v5.1.0, 0.52 v5.0.0, 0.54 v4.1.0, 0.52 v4.0.1, 0.57 v4.0.0, 0.58 v3.7.0, 0.55 v3.5.0, 0.63 v3.4.0
% Syntax : Number of formulae : 69 ( 11 unt; 0 def)
% Number of atoms : 289 ( 6 equ)
% Maximal formula atoms : 17 ( 4 avg)
% Number of connectives : 269 ( 49 ~; 1 |; 146 &)
% ( 5 <=>; 68 =>; 0 <=; 0 <~>)
% Maximal formula depth : 19 ( 6 avg)
% Maximal term depth : 4 ( 1 avg)
% Number of predicates : 42 ( 40 usr; 1 prp; 0-2 aty)
% Number of functors : 6 ( 6 usr; 1 con; 0-2 aty)
% Number of variables : 101 ( 86 !; 15 ?)
% SPC : FOF_THM_RFO_SEQ
% Comments : Normal version: includes the axioms (which may be theorems from
% other articles) and background that are possibly necessary.
% : Translated by MPTP from the Mizar Mathematical Library 4.48.930.
% : The problem encoding is based on set theory.
%------------------------------------------------------------------------------
fof(t19_lopclset,conjecture,
! [A] :
( ( ~ v3_struct_0(A)
& v10_lattices(A)
& v17_lattices(A)
& ~ v3_realset2(A)
& l3_lattices(A) )
=> ! [B] :
( m1_subset_1(B,u1_struct_0(A))
=> r1_tarski(a_2_0_lopclset(A,B),k7_lopclset(A)) ) ) ).
fof(antisymmetry_r2_hidden,axiom,
! [A,B] :
( r2_hidden(A,B)
=> ~ r2_hidden(B,A) ) ).
fof(cc10_membered,axiom,
! [A] :
( v1_membered(A)
=> ! [B] :
( m1_subset_1(B,A)
=> v1_xcmplx_0(B) ) ) ).
fof(cc11_membered,axiom,
! [A] :
( v2_membered(A)
=> ! [B] :
( m1_subset_1(B,A)
=> ( v1_xcmplx_0(B)
& v1_xreal_0(B) ) ) ) ).
fof(cc12_membered,axiom,
! [A] :
( v3_membered(A)
=> ! [B] :
( m1_subset_1(B,A)
=> ( v1_xcmplx_0(B)
& v1_xreal_0(B)
& v1_rat_1(B) ) ) ) ).
fof(cc13_membered,axiom,
! [A] :
( v4_membered(A)
=> ! [B] :
( m1_subset_1(B,A)
=> ( v1_xcmplx_0(B)
& v1_xreal_0(B)
& v1_int_1(B)
& v1_rat_1(B) ) ) ) ).
fof(cc14_membered,axiom,
! [A] :
( v5_membered(A)
=> ! [B] :
( m1_subset_1(B,A)
=> ( v1_xcmplx_0(B)
& v4_ordinal2(B)
& v1_xreal_0(B)
& v1_int_1(B)
& v1_rat_1(B) ) ) ) ).
fof(cc15_membered,axiom,
! [A] :
( v1_xboole_0(A)
=> ( v1_membered(A)
& v2_membered(A)
& v3_membered(A)
& v4_membered(A)
& v5_membered(A) ) ) ).
fof(cc16_membered,axiom,
! [A] :
( v1_membered(A)
=> ! [B] :
( m1_subset_1(B,k1_zfmisc_1(A))
=> v1_membered(B) ) ) ).
fof(cc17_membered,axiom,
! [A] :
( v2_membered(A)
=> ! [B] :
( m1_subset_1(B,k1_zfmisc_1(A))
=> ( v1_membered(B)
& v2_membered(B) ) ) ) ).
fof(cc18_membered,axiom,
! [A] :
( v3_membered(A)
=> ! [B] :
( m1_subset_1(B,k1_zfmisc_1(A))
=> ( v1_membered(B)
& v2_membered(B)
& v3_membered(B) ) ) ) ).
fof(cc19_membered,axiom,
! [A] :
( v4_membered(A)
=> ! [B] :
( m1_subset_1(B,k1_zfmisc_1(A))
=> ( v1_membered(B)
& v2_membered(B)
& v3_membered(B)
& v4_membered(B) ) ) ) ).
fof(cc1_finset_1,axiom,
! [A] :
( v1_xboole_0(A)
=> v1_finset_1(A) ) ).
fof(cc1_finsub_1,axiom,
! [A] :
( v4_finsub_1(A)
=> ( v1_finsub_1(A)
& v3_finsub_1(A) ) ) ).
fof(cc1_lattices,axiom,
! [A] :
( l3_lattices(A)
=> ( ( ~ v3_struct_0(A)
& v10_lattices(A) )
=> ( ~ v3_struct_0(A)
& v4_lattices(A)
& v5_lattices(A)
& v6_lattices(A)
& v7_lattices(A)
& v8_lattices(A)
& v9_lattices(A) ) ) ) ).
fof(cc1_membered,axiom,
! [A] :
( v5_membered(A)
=> v4_membered(A) ) ).
fof(cc20_membered,axiom,
! [A] :
( v5_membered(A)
=> ! [B] :
( m1_subset_1(B,k1_zfmisc_1(A))
=> ( v1_membered(B)
& v2_membered(B)
& v3_membered(B)
& v4_membered(B)
& v5_membered(B) ) ) ) ).
fof(cc2_finset_1,axiom,
! [A] :
( v1_finset_1(A)
=> ! [B] :
( m1_subset_1(B,k1_zfmisc_1(A))
=> v1_finset_1(B) ) ) ).
fof(cc2_finsub_1,axiom,
! [A] :
( ( v1_finsub_1(A)
& v3_finsub_1(A) )
=> v4_finsub_1(A) ) ).
fof(cc2_lattices,axiom,
! [A] :
( l3_lattices(A)
=> ( ( ~ v3_struct_0(A)
& v4_lattices(A)
& v5_lattices(A)
& v6_lattices(A)
& v7_lattices(A)
& v8_lattices(A)
& v9_lattices(A) )
=> ( ~ v3_struct_0(A)
& v10_lattices(A) ) ) ) ).
fof(cc2_membered,axiom,
! [A] :
( v4_membered(A)
=> v3_membered(A) ) ).
fof(cc3_lattices,axiom,
! [A] :
( l3_lattices(A)
=> ( ( ~ v3_struct_0(A)
& v13_lattices(A)
& v14_lattices(A) )
=> ( ~ v3_struct_0(A)
& v15_lattices(A) ) ) ) ).
fof(cc3_membered,axiom,
! [A] :
( v3_membered(A)
=> v2_membered(A) ) ).
fof(cc4_lattices,axiom,
! [A] :
( l3_lattices(A)
=> ( ( ~ v3_struct_0(A)
& v15_lattices(A) )
=> ( ~ v3_struct_0(A)
& v13_lattices(A)
& v14_lattices(A) ) ) ) ).
fof(cc4_membered,axiom,
! [A] :
( v2_membered(A)
=> v1_membered(A) ) ).
fof(cc5_lattices,axiom,
! [A] :
( l3_lattices(A)
=> ( ( ~ v3_struct_0(A)
& v17_lattices(A) )
=> ( ~ v3_struct_0(A)
& v11_lattices(A)
& v13_lattices(A)
& v14_lattices(A)
& v15_lattices(A)
& v16_lattices(A) ) ) ) ).
fof(cc6_lattices,axiom,
! [A] :
( l3_lattices(A)
=> ( ( ~ v3_struct_0(A)
& v11_lattices(A)
& v15_lattices(A)
& v16_lattices(A) )
=> ( ~ v3_struct_0(A)
& v17_lattices(A) ) ) ) ).
fof(cc7_lattices,axiom,
! [A] :
( l3_lattices(A)
=> ( ( ~ v3_struct_0(A)
& v10_lattices(A)
& v11_lattices(A) )
=> ( ~ v3_struct_0(A)
& v4_lattices(A)
& v5_lattices(A)
& v6_lattices(A)
& v7_lattices(A)
& v8_lattices(A)
& v9_lattices(A)
& v10_lattices(A)
& v12_lattices(A) ) ) ) ).
fof(d3_tarski,axiom,
! [A,B] :
( r1_tarski(A,B)
<=> ! [C] :
( r2_hidden(C,A)
=> r2_hidden(C,B) ) ) ).
fof(d5_lopclset,axiom,
! [A] :
( ( ~ v3_struct_0(A)
& v10_lattices(A)
& v17_lattices(A)
& ~ v3_realset2(A)
& l3_lattices(A) )
=> k7_lopclset(A) = a_1_1_lopclset(A) ) ).
fof(dt_k1_xboole_0,axiom,
$true ).
fof(dt_k1_zfmisc_1,axiom,
$true ).
fof(dt_k7_lopclset,axiom,
! [A] :
( ( ~ v3_struct_0(A)
& v10_lattices(A)
& v17_lattices(A)
& ~ v3_realset2(A)
& l3_lattices(A) )
=> m1_subset_1(k7_lopclset(A),k1_zfmisc_1(k1_zfmisc_1(u1_struct_0(A)))) ) ).
fof(dt_l1_lattices,axiom,
! [A] :
( l1_lattices(A)
=> l1_struct_0(A) ) ).
fof(dt_l1_struct_0,axiom,
$true ).
fof(dt_l2_lattices,axiom,
! [A] :
( l2_lattices(A)
=> l1_struct_0(A) ) ).
fof(dt_l3_lattices,axiom,
! [A] :
( l3_lattices(A)
=> ( l1_lattices(A)
& l2_lattices(A) ) ) ).
fof(dt_m1_filter_0,axiom,
! [A] :
( ( ~ v3_struct_0(A)
& v10_lattices(A)
& l3_lattices(A) )
=> ! [B] :
( m1_filter_0(B,A)
=> ( ~ v1_xboole_0(B)
& m1_subset_1(B,k1_zfmisc_1(u1_struct_0(A))) ) ) ) ).
fof(dt_m1_subset_1,axiom,
$true ).
fof(dt_u1_struct_0,axiom,
$true ).
fof(existence_l1_lattices,axiom,
? [A] : l1_lattices(A) ).
fof(existence_l1_struct_0,axiom,
? [A] : l1_struct_0(A) ).
fof(existence_l2_lattices,axiom,
? [A] : l2_lattices(A) ).
fof(existence_l3_lattices,axiom,
? [A] : l3_lattices(A) ).
fof(existence_m1_filter_0,axiom,
! [A] :
( ( ~ v3_struct_0(A)
& v10_lattices(A)
& l3_lattices(A) )
=> ? [B] : m1_filter_0(B,A) ) ).
fof(existence_m1_subset_1,axiom,
! [A] :
? [B] : m1_subset_1(B,A) ).
fof(fc1_finsub_1,axiom,
! [A] :
( ~ v1_xboole_0(k1_zfmisc_1(A))
& v1_finsub_1(k1_zfmisc_1(A))
& v3_finsub_1(k1_zfmisc_1(A))
& v4_finsub_1(k1_zfmisc_1(A)) ) ).
fof(fc1_struct_0,axiom,
! [A] :
( ( ~ v3_struct_0(A)
& l1_struct_0(A) )
=> ~ v1_xboole_0(u1_struct_0(A)) ) ).
fof(fc2_lopclset,axiom,
! [A] :
( ( ~ v3_struct_0(A)
& v10_lattices(A)
& v17_lattices(A)
& ~ v3_realset2(A)
& l3_lattices(A) )
=> ~ v1_xboole_0(k7_lopclset(A)) ) ).
fof(fc6_membered,axiom,
( v1_xboole_0(k1_xboole_0)
& v1_membered(k1_xboole_0)
& v2_membered(k1_xboole_0)
& v3_membered(k1_xboole_0)
& v4_membered(k1_xboole_0)
& v5_membered(k1_xboole_0) ) ).
fof(fraenkel_a_1_1_lopclset,axiom,
! [A,B] :
( ( ~ v3_struct_0(B)
& v10_lattices(B)
& v17_lattices(B)
& ~ v3_realset2(B)
& l3_lattices(B) )
=> ( r2_hidden(A,a_1_1_lopclset(B))
<=> ? [C] :
( m1_filter_0(C,B)
& A = C
& v1_filter_0(C,B) ) ) ) ).
fof(fraenkel_a_2_0_lopclset,axiom,
! [A,B,C] :
( ( ~ v3_struct_0(B)
& v10_lattices(B)
& v17_lattices(B)
& ~ v3_realset2(B)
& l3_lattices(B)
& m1_subset_1(C,u1_struct_0(B)) )
=> ( r2_hidden(A,a_2_0_lopclset(B,C))
<=> ? [D] :
( m1_filter_0(D,B)
& A = D
& v1_filter_0(D,B)
& r2_hidden(C,D) ) ) ) ).
fof(rc1_finset_1,axiom,
? [A] :
( ~ v1_xboole_0(A)
& v1_finset_1(A) ) ).
fof(rc1_lopclset,axiom,
? [A] :
( l3_lattices(A)
& ~ v3_struct_0(A)
& v4_lattices(A)
& v5_lattices(A)
& v6_lattices(A)
& v7_lattices(A)
& v8_lattices(A)
& v9_lattices(A)
& v10_lattices(A)
& v11_lattices(A)
& v12_lattices(A)
& v13_lattices(A)
& v14_lattices(A)
& v15_lattices(A)
& v16_lattices(A)
& v17_lattices(A)
& ~ v3_realset2(A) ) ).
fof(rc1_membered,axiom,
? [A] :
( ~ v1_xboole_0(A)
& v1_membered(A)
& v2_membered(A)
& v3_membered(A)
& v4_membered(A)
& v5_membered(A) ) ).
fof(rc3_finset_1,axiom,
! [A] :
( ~ v1_xboole_0(A)
=> ? [B] :
( m1_subset_1(B,k1_zfmisc_1(A))
& ~ v1_xboole_0(B)
& v1_finset_1(B) ) ) ).
fof(rc3_struct_0,axiom,
? [A] :
( l1_struct_0(A)
& ~ v3_struct_0(A) ) ).
fof(rc4_finset_1,axiom,
! [A] :
( ~ v1_xboole_0(A)
=> ? [B] :
( m1_subset_1(B,k1_zfmisc_1(A))
& ~ v1_xboole_0(B)
& v1_finset_1(B) ) ) ).
fof(rc5_struct_0,axiom,
! [A] :
( ( ~ v3_struct_0(A)
& l1_struct_0(A) )
=> ? [B] :
( m1_subset_1(B,k1_zfmisc_1(u1_struct_0(A)))
& ~ v1_xboole_0(B) ) ) ).
fof(reflexivity_r1_tarski,axiom,
! [A,B] : r1_tarski(A,A) ).
fof(t1_subset,axiom,
! [A,B] :
( r2_hidden(A,B)
=> m1_subset_1(A,B) ) ).
fof(t2_subset,axiom,
! [A,B] :
( m1_subset_1(A,B)
=> ( v1_xboole_0(B)
| r2_hidden(A,B) ) ) ).
fof(t2_tarski,axiom,
! [A,B] :
( ! [C] :
( r2_hidden(C,A)
<=> r2_hidden(C,B) )
=> A = B ) ).
fof(t3_subset,axiom,
! [A,B] :
( m1_subset_1(A,k1_zfmisc_1(B))
<=> r1_tarski(A,B) ) ).
fof(t4_subset,axiom,
! [A,B,C] :
( ( r2_hidden(A,B)
& m1_subset_1(B,k1_zfmisc_1(C)) )
=> m1_subset_1(A,C) ) ).
fof(t5_subset,axiom,
! [A,B,C] :
~ ( r2_hidden(A,B)
& m1_subset_1(B,k1_zfmisc_1(C))
& v1_xboole_0(C) ) ).
fof(t6_boole,axiom,
! [A] :
( v1_xboole_0(A)
=> A = k1_xboole_0 ) ).
fof(t7_boole,axiom,
! [A,B] :
~ ( r2_hidden(A,B)
& v1_xboole_0(B) ) ).
fof(t8_boole,axiom,
! [A,B] :
~ ( v1_xboole_0(A)
& A != B
& v1_xboole_0(B) ) ).
%------------------------------------------------------------------------------