TPTP Problem File: LAT285+1.p
View Solutions
- Solve Problem
%------------------------------------------------------------------------------
% File : LAT285+1 : TPTP v9.0.0. Released v3.4.0.
% Domain : Lattice Theory
% Problem : Representation Theorem for Boolean Algebras T14
% Version : [Urb08] axioms : Especial.
% English :
% Refs : [Wal93] Walijewski (1993), Representation Theorem for Boolean
% : [Urb07] Urban (2007), MPTP 0.2: Design, Implementation, and In
% : [Urb08] Urban (2006), Email to G. Sutcliffe
% Source : [Urb08]
% Names : t14_lopclset [Urb08]
% Status : Theorem
% Rating : 1.00 v3.4.0
% Syntax : Number of formulae : 208 ( 32 unt; 0 def)
% Number of atoms : 882 ( 68 equ)
% Maximal formula atoms : 16 ( 4 avg)
% Number of connectives : 786 ( 112 ~; 1 |; 447 &)
% ( 15 <=>; 211 =>; 0 <=; 0 <~>)
% Maximal formula depth : 17 ( 6 avg)
% Maximal term depth : 4 ( 1 avg)
% Number of predicates : 53 ( 51 usr; 1 prp; 0-3 aty)
% Number of functors : 34 ( 34 usr; 1 con; 0-6 aty)
% Number of variables : 396 ( 366 !; 30 ?)
% SPC : FOF_THM_RFO_SEQ
% Comments : Normal version: includes the axioms (which may be theorems from
% other articles) and background that are possibly necessary.
% : Translated by MPTP from the Mizar Mathematical Library 4.48.930.
% : The problem encoding is based on set theory.
%------------------------------------------------------------------------------
fof(t14_lopclset,conjecture,
! [A] :
( ( ~ v3_struct_0(A)
& v2_pre_topc(A)
& l1_pre_topc(A) )
=> v17_lattices(k6_lopclset(A)) ) ).
fof(abstractness_v3_lattices,axiom,
! [A] :
( l3_lattices(A)
=> ( v3_lattices(A)
=> A = g3_lattices(u1_struct_0(A),u2_lattices(A),u1_lattices(A)) ) ) ).
fof(antisymmetry_r2_hidden,axiom,
! [A,B] :
( r2_hidden(A,B)
=> ~ r2_hidden(B,A) ) ).
fof(cc10_membered,axiom,
! [A] :
( v1_membered(A)
=> ! [B] :
( m1_subset_1(B,A)
=> v1_xcmplx_0(B) ) ) ).
fof(cc11_membered,axiom,
! [A] :
( v2_membered(A)
=> ! [B] :
( m1_subset_1(B,A)
=> ( v1_xcmplx_0(B)
& v1_xreal_0(B) ) ) ) ).
fof(cc12_membered,axiom,
! [A] :
( v3_membered(A)
=> ! [B] :
( m1_subset_1(B,A)
=> ( v1_xcmplx_0(B)
& v1_xreal_0(B)
& v1_rat_1(B) ) ) ) ).
fof(cc13_membered,axiom,
! [A] :
( v4_membered(A)
=> ! [B] :
( m1_subset_1(B,A)
=> ( v1_xcmplx_0(B)
& v1_xreal_0(B)
& v1_int_1(B)
& v1_rat_1(B) ) ) ) ).
fof(cc14_membered,axiom,
! [A] :
( v5_membered(A)
=> ! [B] :
( m1_subset_1(B,A)
=> ( v1_xcmplx_0(B)
& v4_ordinal2(B)
& v1_xreal_0(B)
& v1_int_1(B)
& v1_rat_1(B) ) ) ) ).
fof(cc15_membered,axiom,
! [A] :
( v1_xboole_0(A)
=> ( v1_membered(A)
& v2_membered(A)
& v3_membered(A)
& v4_membered(A)
& v5_membered(A) ) ) ).
fof(cc16_membered,axiom,
! [A] :
( v1_membered(A)
=> ! [B] :
( m1_subset_1(B,k1_zfmisc_1(A))
=> v1_membered(B) ) ) ).
fof(cc17_membered,axiom,
! [A] :
( v2_membered(A)
=> ! [B] :
( m1_subset_1(B,k1_zfmisc_1(A))
=> ( v1_membered(B)
& v2_membered(B) ) ) ) ).
fof(cc18_membered,axiom,
! [A] :
( v3_membered(A)
=> ! [B] :
( m1_subset_1(B,k1_zfmisc_1(A))
=> ( v1_membered(B)
& v2_membered(B)
& v3_membered(B) ) ) ) ).
fof(cc19_membered,axiom,
! [A] :
( v4_membered(A)
=> ! [B] :
( m1_subset_1(B,k1_zfmisc_1(A))
=> ( v1_membered(B)
& v2_membered(B)
& v3_membered(B)
& v4_membered(B) ) ) ) ).
fof(cc1_finset_1,axiom,
! [A] :
( v1_xboole_0(A)
=> v1_finset_1(A) ) ).
fof(cc1_finsub_1,axiom,
! [A] :
( v4_finsub_1(A)
=> ( v1_finsub_1(A)
& v3_finsub_1(A) ) ) ).
fof(cc1_funct_2,axiom,
! [A,B,C] :
( m1_relset_1(C,A,B)
=> ( ( v1_funct_1(C)
& v1_partfun1(C,A,B) )
=> ( v1_funct_1(C)
& v1_funct_2(C,A,B) ) ) ) ).
fof(cc1_lattices,axiom,
! [A] :
( l3_lattices(A)
=> ( ( ~ v3_struct_0(A)
& v10_lattices(A) )
=> ( ~ v3_struct_0(A)
& v4_lattices(A)
& v5_lattices(A)
& v6_lattices(A)
& v7_lattices(A)
& v8_lattices(A)
& v9_lattices(A) ) ) ) ).
fof(cc1_membered,axiom,
! [A] :
( v5_membered(A)
=> v4_membered(A) ) ).
fof(cc1_relset_1,axiom,
! [A,B,C] :
( m1_subset_1(C,k1_zfmisc_1(k2_zfmisc_1(A,B)))
=> v1_relat_1(C) ) ).
fof(cc20_membered,axiom,
! [A] :
( v5_membered(A)
=> ! [B] :
( m1_subset_1(B,k1_zfmisc_1(A))
=> ( v1_membered(B)
& v2_membered(B)
& v3_membered(B)
& v4_membered(B)
& v5_membered(B) ) ) ) ).
fof(cc2_finset_1,axiom,
! [A] :
( v1_finset_1(A)
=> ! [B] :
( m1_subset_1(B,k1_zfmisc_1(A))
=> v1_finset_1(B) ) ) ).
fof(cc2_finsub_1,axiom,
! [A] :
( ( v1_finsub_1(A)
& v3_finsub_1(A) )
=> v4_finsub_1(A) ) ).
fof(cc2_lattices,axiom,
! [A] :
( l3_lattices(A)
=> ( ( ~ v3_struct_0(A)
& v4_lattices(A)
& v5_lattices(A)
& v6_lattices(A)
& v7_lattices(A)
& v8_lattices(A)
& v9_lattices(A) )
=> ( ~ v3_struct_0(A)
& v10_lattices(A) ) ) ) ).
fof(cc2_membered,axiom,
! [A] :
( v4_membered(A)
=> v3_membered(A) ) ).
fof(cc3_lattices,axiom,
! [A] :
( l3_lattices(A)
=> ( ( ~ v3_struct_0(A)
& v13_lattices(A)
& v14_lattices(A) )
=> ( ~ v3_struct_0(A)
& v15_lattices(A) ) ) ) ).
fof(cc3_membered,axiom,
! [A] :
( v3_membered(A)
=> v2_membered(A) ) ).
fof(cc4_lattices,axiom,
! [A] :
( l3_lattices(A)
=> ( ( ~ v3_struct_0(A)
& v15_lattices(A) )
=> ( ~ v3_struct_0(A)
& v13_lattices(A)
& v14_lattices(A) ) ) ) ).
fof(cc4_membered,axiom,
! [A] :
( v2_membered(A)
=> v1_membered(A) ) ).
fof(cc5_funct_2,axiom,
! [A,B] :
( ~ v1_xboole_0(B)
=> ! [C] :
( m1_relset_1(C,A,B)
=> ( ( v1_funct_1(C)
& v1_funct_2(C,A,B) )
=> ( v1_funct_1(C)
& v1_partfun1(C,A,B)
& v1_funct_2(C,A,B) ) ) ) ) ).
fof(cc5_lattices,axiom,
! [A] :
( l3_lattices(A)
=> ( ( ~ v3_struct_0(A)
& v17_lattices(A) )
=> ( ~ v3_struct_0(A)
& v11_lattices(A)
& v13_lattices(A)
& v14_lattices(A)
& v15_lattices(A)
& v16_lattices(A) ) ) ) ).
fof(cc6_funct_2,axiom,
! [A,B] :
( ( ~ v1_xboole_0(A)
& ~ v1_xboole_0(B) )
=> ! [C] :
( m1_relset_1(C,A,B)
=> ( ( v1_funct_1(C)
& v1_funct_2(C,A,B) )
=> ( v1_funct_1(C)
& ~ v1_xboole_0(C)
& v1_partfun1(C,A,B)
& v1_funct_2(C,A,B) ) ) ) ) ).
fof(cc6_lattices,axiom,
! [A] :
( l3_lattices(A)
=> ( ( ~ v3_struct_0(A)
& v11_lattices(A)
& v15_lattices(A)
& v16_lattices(A) )
=> ( ~ v3_struct_0(A)
& v17_lattices(A) ) ) ) ).
fof(cc7_lattices,axiom,
! [A] :
( l3_lattices(A)
=> ( ( ~ v3_struct_0(A)
& v10_lattices(A)
& v11_lattices(A) )
=> ( ~ v3_struct_0(A)
& v4_lattices(A)
& v5_lattices(A)
& v6_lattices(A)
& v7_lattices(A)
& v8_lattices(A)
& v9_lattices(A)
& v10_lattices(A)
& v12_lattices(A) ) ) ) ).
fof(commutativity_k1_finsub_1,axiom,
! [A,B,C] :
( ( ~ v1_xboole_0(A)
& v4_finsub_1(A)
& m1_subset_1(B,A)
& m1_subset_1(C,A) )
=> k1_finsub_1(A,B,C) = k1_finsub_1(A,C,B) ) ).
fof(commutativity_k2_lopclset,axiom,
! [A,B,C] :
( ( ~ v3_struct_0(A)
& v2_pre_topc(A)
& l1_pre_topc(A)
& m1_subset_1(B,k1_lopclset(A))
& m1_subset_1(C,k1_lopclset(A)) )
=> k2_lopclset(A,B,C) = k2_lopclset(A,C,B) ) ).
fof(commutativity_k2_tarski,axiom,
! [A,B] : k2_tarski(A,B) = k2_tarski(B,A) ).
fof(commutativity_k2_xboole_0,axiom,
! [A,B] : k2_xboole_0(A,B) = k2_xboole_0(B,A) ).
fof(commutativity_k3_finsub_1,axiom,
! [A,B,C] :
( ( ~ v1_xboole_0(A)
& v4_finsub_1(A)
& m1_subset_1(B,A)
& m1_subset_1(C,A) )
=> k3_finsub_1(A,B,C) = k3_finsub_1(A,C,B) ) ).
fof(commutativity_k3_lattices,axiom,
! [A,B,C] :
( ( ~ v3_struct_0(A)
& v4_lattices(A)
& l2_lattices(A)
& m1_subset_1(B,u1_struct_0(A))
& m1_subset_1(C,u1_struct_0(A)) )
=> k3_lattices(A,B,C) = k3_lattices(A,C,B) ) ).
fof(commutativity_k3_lopclset,axiom,
! [A,B,C] :
( ( ~ v3_struct_0(A)
& v2_pre_topc(A)
& l1_pre_topc(A)
& m1_subset_1(B,k1_lopclset(A))
& m1_subset_1(C,k1_lopclset(A)) )
=> k3_lopclset(A,B,C) = k3_lopclset(A,C,B) ) ).
fof(commutativity_k3_xboole_0,axiom,
! [A,B] : k3_xboole_0(A,B) = k3_xboole_0(B,A) ).
fof(commutativity_k4_lattices,axiom,
! [A,B,C] :
( ( ~ v3_struct_0(A)
& v6_lattices(A)
& l1_lattices(A)
& m1_subset_1(B,u1_struct_0(A))
& m1_subset_1(C,u1_struct_0(A)) )
=> k4_lattices(A,B,C) = k4_lattices(A,C,B) ) ).
fof(commutativity_k4_subset_1,axiom,
! [A,B,C] :
( ( m1_subset_1(B,k1_zfmisc_1(A))
& m1_subset_1(C,k1_zfmisc_1(A)) )
=> k4_subset_1(A,B,C) = k4_subset_1(A,C,B) ) ).
fof(d11_lattices,axiom,
! [A] :
( ( ~ v3_struct_0(A)
& l3_lattices(A) )
=> ( v11_lattices(A)
<=> ! [B] :
( m1_subset_1(B,u1_struct_0(A))
=> ! [C] :
( m1_subset_1(C,u1_struct_0(A))
=> ! [D] :
( m1_subset_1(D,u1_struct_0(A))
=> k2_lattices(A,B,k1_lattices(A,C,D)) = k1_lattices(A,k2_lattices(A,B,C),k2_lattices(A,B,D)) ) ) ) ) ) ).
fof(d13_lattices,axiom,
! [A] :
( ( ~ v3_struct_0(A)
& l1_lattices(A) )
=> ( v13_lattices(A)
<=> ? [B] :
( m1_subset_1(B,u1_struct_0(A))
& ! [C] :
( m1_subset_1(C,u1_struct_0(A))
=> ( k2_lattices(A,B,C) = B
& k2_lattices(A,C,B) = B ) ) ) ) ) ).
fof(d14_lattices,axiom,
! [A] :
( ( ~ v3_struct_0(A)
& l2_lattices(A) )
=> ( v14_lattices(A)
<=> ? [B] :
( m1_subset_1(B,u1_struct_0(A))
& ! [C] :
( m1_subset_1(C,u1_struct_0(A))
=> ( k1_lattices(A,B,C) = B
& k1_lattices(A,C,B) = B ) ) ) ) ) ).
fof(d15_lattices,axiom,
! [A] :
( ( ~ v3_struct_0(A)
& l3_lattices(A) )
=> ( v15_lattices(A)
<=> ( v13_lattices(A)
& v14_lattices(A) ) ) ) ).
fof(d16_lattices,axiom,
! [A] :
( ( ~ v3_struct_0(A)
& l1_lattices(A) )
=> ( v13_lattices(A)
=> ! [B] :
( m1_subset_1(B,u1_struct_0(A))
=> ( B = k5_lattices(A)
<=> ! [C] :
( m1_subset_1(C,u1_struct_0(A))
=> ( k2_lattices(A,B,C) = B
& k2_lattices(A,C,B) = B ) ) ) ) ) ) ).
fof(d17_lattices,axiom,
! [A] :
( ( ~ v3_struct_0(A)
& l2_lattices(A) )
=> ( v14_lattices(A)
=> ! [B] :
( m1_subset_1(B,u1_struct_0(A))
=> ( B = k6_lattices(A)
<=> ! [C] :
( m1_subset_1(C,u1_struct_0(A))
=> ( k1_lattices(A,B,C) = B
& k1_lattices(A,C,B) = B ) ) ) ) ) ) ).
fof(d18_lattices,axiom,
! [A] :
( ( ~ v3_struct_0(A)
& l3_lattices(A) )
=> ! [B] :
( m1_subset_1(B,u1_struct_0(A))
=> ! [C] :
( m1_subset_1(C,u1_struct_0(A))
=> ( r2_lattices(A,B,C)
<=> ( k1_lattices(A,B,C) = k6_lattices(A)
& k1_lattices(A,C,B) = k6_lattices(A)
& k2_lattices(A,B,C) = k5_lattices(A)
& k2_lattices(A,C,B) = k5_lattices(A) ) ) ) ) ) ).
fof(d19_lattices,axiom,
! [A] :
( ( ~ v3_struct_0(A)
& l3_lattices(A) )
=> ( v16_lattices(A)
<=> ! [B] :
( m1_subset_1(B,u1_struct_0(A))
=> ? [C] :
( m1_subset_1(C,u1_struct_0(A))
& r2_lattices(A,C,B) ) ) ) ) ).
fof(d1_binop_1,axiom,
! [A] :
( ( v1_relat_1(A)
& v1_funct_1(A) )
=> ! [B,C] : k1_binop_1(A,B,C) = k1_funct_1(A,k4_tarski(B,C)) ) ).
fof(d1_lattices,axiom,
! [A] :
( ( ~ v3_struct_0(A)
& l2_lattices(A) )
=> ! [B] :
( m1_subset_1(B,u1_struct_0(A))
=> ! [C] :
( m1_subset_1(C,u1_struct_0(A))
=> k1_lattices(A,B,C) = k2_binop_1(u1_struct_0(A),u1_struct_0(A),u1_struct_0(A),u2_lattices(A),B,C) ) ) ) ).
fof(d1_lopclset,axiom,
! [A] :
( ( ~ v3_struct_0(A)
& l1_pre_topc(A) )
=> k1_lopclset(A) = a_1_0_lopclset(A) ) ).
fof(d20_lattices,axiom,
! [A] :
( ( ~ v3_struct_0(A)
& l3_lattices(A) )
=> ( v17_lattices(A)
<=> ( v15_lattices(A)
& v16_lattices(A)
& v11_lattices(A) ) ) ) ).
fof(d2_lattices,axiom,
! [A] :
( ( ~ v3_struct_0(A)
& l1_lattices(A) )
=> ! [B] :
( m1_subset_1(B,u1_struct_0(A))
=> ! [C] :
( m1_subset_1(C,u1_struct_0(A))
=> k2_lattices(A,B,C) = k2_binop_1(u1_struct_0(A),u1_struct_0(A),u1_struct_0(A),u1_lattices(A),B,C) ) ) ) ).
fof(d4_lopclset,axiom,
! [A] :
( ( ~ v3_struct_0(A)
& v2_pre_topc(A)
& l1_pre_topc(A) )
=> k6_lopclset(A) = g3_lattices(k1_lopclset(A),k4_lopclset(A),k5_lopclset(A)) ) ).
fof(d5_tarski,axiom,
! [A,B] : k4_tarski(A,B) = k2_tarski(k2_tarski(A,B),k1_tarski(A)) ).
fof(d7_xboole_0,axiom,
! [A,B] :
( r1_xboole_0(A,B)
<=> k3_xboole_0(A,B) = k1_xboole_0 ) ).
fof(dt_g3_lattices,axiom,
! [A,B,C] :
( ( v1_funct_1(B)
& v1_funct_2(B,k2_zfmisc_1(A,A),A)
& m1_relset_1(B,k2_zfmisc_1(A,A),A)
& v1_funct_1(C)
& v1_funct_2(C,k2_zfmisc_1(A,A),A)
& m1_relset_1(C,k2_zfmisc_1(A,A),A) )
=> ( v3_lattices(g3_lattices(A,B,C))
& l3_lattices(g3_lattices(A,B,C)) ) ) ).
fof(dt_k1_binop_1,axiom,
$true ).
fof(dt_k1_finsub_1,axiom,
! [A,B,C] :
( ( ~ v1_xboole_0(A)
& v4_finsub_1(A)
& m1_subset_1(B,A)
& m1_subset_1(C,A) )
=> m1_subset_1(k1_finsub_1(A,B,C),A) ) ).
fof(dt_k1_funct_1,axiom,
$true ).
fof(dt_k1_lattices,axiom,
! [A,B,C] :
( ( ~ v3_struct_0(A)
& l2_lattices(A)
& m1_subset_1(B,u1_struct_0(A))
& m1_subset_1(C,u1_struct_0(A)) )
=> m1_subset_1(k1_lattices(A,B,C),u1_struct_0(A)) ) ).
fof(dt_k1_lopclset,axiom,
! [A] :
( ( ~ v3_struct_0(A)
& l1_pre_topc(A) )
=> m1_subset_1(k1_lopclset(A),k1_zfmisc_1(k1_zfmisc_1(u1_struct_0(A)))) ) ).
fof(dt_k1_pre_topc,axiom,
! [A] :
( l1_struct_0(A)
=> m1_subset_1(k1_pre_topc(A),k1_zfmisc_1(u1_struct_0(A))) ) ).
fof(dt_k1_tarski,axiom,
$true ).
fof(dt_k1_xboole_0,axiom,
$true ).
fof(dt_k1_zfmisc_1,axiom,
$true ).
fof(dt_k2_binop_1,axiom,
! [A,B,C,D,E,F] :
( ( ~ v1_xboole_0(A)
& ~ v1_xboole_0(B)
& v1_funct_1(D)
& v1_funct_2(D,k2_zfmisc_1(A,B),C)
& m1_relset_1(D,k2_zfmisc_1(A,B),C)
& m1_subset_1(E,A)
& m1_subset_1(F,B) )
=> m1_subset_1(k2_binop_1(A,B,C,D,E,F),C) ) ).
fof(dt_k2_lattices,axiom,
! [A,B,C] :
( ( ~ v3_struct_0(A)
& l1_lattices(A)
& m1_subset_1(B,u1_struct_0(A))
& m1_subset_1(C,u1_struct_0(A)) )
=> m1_subset_1(k2_lattices(A,B,C),u1_struct_0(A)) ) ).
fof(dt_k2_lopclset,axiom,
! [A,B,C] :
( ( ~ v3_struct_0(A)
& v2_pre_topc(A)
& l1_pre_topc(A)
& m1_subset_1(B,k1_lopclset(A))
& m1_subset_1(C,k1_lopclset(A)) )
=> m2_subset_1(k2_lopclset(A,B,C),k1_zfmisc_1(u1_struct_0(A)),k1_lopclset(A)) ) ).
fof(dt_k2_pre_topc,axiom,
! [A] :
( l1_struct_0(A)
=> m1_subset_1(k2_pre_topc(A),k1_zfmisc_1(u1_struct_0(A))) ) ).
fof(dt_k2_tarski,axiom,
$true ).
fof(dt_k2_xboole_0,axiom,
$true ).
fof(dt_k2_zfmisc_1,axiom,
$true ).
fof(dt_k3_finsub_1,axiom,
! [A,B,C] :
( ( ~ v1_xboole_0(A)
& v4_finsub_1(A)
& m1_subset_1(B,A)
& m1_subset_1(C,A) )
=> m1_subset_1(k3_finsub_1(A,B,C),A) ) ).
fof(dt_k3_lattices,axiom,
! [A,B,C] :
( ( ~ v3_struct_0(A)
& v4_lattices(A)
& l2_lattices(A)
& m1_subset_1(B,u1_struct_0(A))
& m1_subset_1(C,u1_struct_0(A)) )
=> m1_subset_1(k3_lattices(A,B,C),u1_struct_0(A)) ) ).
fof(dt_k3_lopclset,axiom,
! [A,B,C] :
( ( ~ v3_struct_0(A)
& v2_pre_topc(A)
& l1_pre_topc(A)
& m1_subset_1(B,k1_lopclset(A))
& m1_subset_1(C,k1_lopclset(A)) )
=> m2_subset_1(k3_lopclset(A,B,C),k1_zfmisc_1(u1_struct_0(A)),k1_lopclset(A)) ) ).
fof(dt_k3_subset_1,axiom,
! [A,B] :
( m1_subset_1(B,k1_zfmisc_1(A))
=> m1_subset_1(k3_subset_1(A,B),k1_zfmisc_1(A)) ) ).
fof(dt_k3_xboole_0,axiom,
$true ).
fof(dt_k4_lattices,axiom,
! [A,B,C] :
( ( ~ v3_struct_0(A)
& v6_lattices(A)
& l1_lattices(A)
& m1_subset_1(B,u1_struct_0(A))
& m1_subset_1(C,u1_struct_0(A)) )
=> m1_subset_1(k4_lattices(A,B,C),u1_struct_0(A)) ) ).
fof(dt_k4_lopclset,axiom,
! [A] :
( ( ~ v3_struct_0(A)
& v2_pre_topc(A)
& l1_pre_topc(A) )
=> ( v1_funct_1(k4_lopclset(A))
& v1_funct_2(k4_lopclset(A),k2_zfmisc_1(k1_lopclset(A),k1_lopclset(A)),k1_lopclset(A))
& m2_relset_1(k4_lopclset(A),k2_zfmisc_1(k1_lopclset(A),k1_lopclset(A)),k1_lopclset(A)) ) ) ).
fof(dt_k4_subset_1,axiom,
! [A,B,C] :
( ( m1_subset_1(B,k1_zfmisc_1(A))
& m1_subset_1(C,k1_zfmisc_1(A)) )
=> m1_subset_1(k4_subset_1(A,B,C),k1_zfmisc_1(A)) ) ).
fof(dt_k4_tarski,axiom,
$true ).
fof(dt_k5_lattices,axiom,
! [A] :
( ( ~ v3_struct_0(A)
& l1_lattices(A) )
=> m1_subset_1(k5_lattices(A),u1_struct_0(A)) ) ).
fof(dt_k5_lopclset,axiom,
! [A] :
( ( ~ v3_struct_0(A)
& v2_pre_topc(A)
& l1_pre_topc(A) )
=> ( v1_funct_1(k5_lopclset(A))
& v1_funct_2(k5_lopclset(A),k2_zfmisc_1(k1_lopclset(A),k1_lopclset(A)),k1_lopclset(A))
& m2_relset_1(k5_lopclset(A),k2_zfmisc_1(k1_lopclset(A),k1_lopclset(A)),k1_lopclset(A)) ) ) ).
fof(dt_k6_lattices,axiom,
! [A] :
( ( ~ v3_struct_0(A)
& l2_lattices(A) )
=> m1_subset_1(k6_lattices(A),u1_struct_0(A)) ) ).
fof(dt_k6_lopclset,axiom,
! [A] :
( ( ~ v3_struct_0(A)
& v2_pre_topc(A)
& l1_pre_topc(A) )
=> ( ~ v3_struct_0(k6_lopclset(A))
& v10_lattices(k6_lopclset(A))
& l3_lattices(k6_lopclset(A)) ) ) ).
fof(dt_l1_lattices,axiom,
! [A] :
( l1_lattices(A)
=> l1_struct_0(A) ) ).
fof(dt_l1_pre_topc,axiom,
! [A] :
( l1_pre_topc(A)
=> l1_struct_0(A) ) ).
fof(dt_l1_struct_0,axiom,
$true ).
fof(dt_l2_lattices,axiom,
! [A] :
( l2_lattices(A)
=> l1_struct_0(A) ) ).
fof(dt_l3_lattices,axiom,
! [A] :
( l3_lattices(A)
=> ( l1_lattices(A)
& l2_lattices(A) ) ) ).
fof(dt_m1_relset_1,axiom,
$true ).
fof(dt_m1_subset_1,axiom,
$true ).
fof(dt_m2_relset_1,axiom,
! [A,B,C] :
( m2_relset_1(C,A,B)
=> m1_subset_1(C,k1_zfmisc_1(k2_zfmisc_1(A,B))) ) ).
fof(dt_m2_subset_1,axiom,
! [A,B] :
( ( ~ v1_xboole_0(A)
& ~ v1_xboole_0(B)
& m1_subset_1(B,k1_zfmisc_1(A)) )
=> ! [C] :
( m2_subset_1(C,A,B)
=> m1_subset_1(C,A) ) ) ).
fof(dt_u1_lattices,axiom,
! [A] :
( l1_lattices(A)
=> ( v1_funct_1(u1_lattices(A))
& v1_funct_2(u1_lattices(A),k2_zfmisc_1(u1_struct_0(A),u1_struct_0(A)),u1_struct_0(A))
& m2_relset_1(u1_lattices(A),k2_zfmisc_1(u1_struct_0(A),u1_struct_0(A)),u1_struct_0(A)) ) ) ).
fof(dt_u1_struct_0,axiom,
$true ).
fof(dt_u2_lattices,axiom,
! [A] :
( l2_lattices(A)
=> ( v1_funct_1(u2_lattices(A))
& v1_funct_2(u2_lattices(A),k2_zfmisc_1(u1_struct_0(A),u1_struct_0(A)),u1_struct_0(A))
& m2_relset_1(u2_lattices(A),k2_zfmisc_1(u1_struct_0(A),u1_struct_0(A)),u1_struct_0(A)) ) ) ).
fof(existence_l1_lattices,axiom,
? [A] : l1_lattices(A) ).
fof(existence_l1_pre_topc,axiom,
? [A] : l1_pre_topc(A) ).
fof(existence_l1_struct_0,axiom,
? [A] : l1_struct_0(A) ).
fof(existence_l2_lattices,axiom,
? [A] : l2_lattices(A) ).
fof(existence_l3_lattices,axiom,
? [A] : l3_lattices(A) ).
fof(existence_m1_relset_1,axiom,
! [A,B] :
? [C] : m1_relset_1(C,A,B) ).
fof(existence_m1_subset_1,axiom,
! [A] :
? [B] : m1_subset_1(B,A) ).
fof(existence_m2_relset_1,axiom,
! [A,B] :
? [C] : m2_relset_1(C,A,B) ).
fof(existence_m2_subset_1,axiom,
! [A,B] :
( ( ~ v1_xboole_0(A)
& ~ v1_xboole_0(B)
& m1_subset_1(B,k1_zfmisc_1(A)) )
=> ? [C] : m2_subset_1(C,A,B) ) ).
fof(fc10_finset_1,axiom,
! [A,B] :
( v1_finset_1(B)
=> v1_finset_1(k3_xboole_0(A,B)) ) ).
fof(fc10_membered,axiom,
! [A] :
( v1_int_1(A)
=> ( v1_membered(k1_tarski(A))
& v2_membered(k1_tarski(A))
& v3_membered(k1_tarski(A))
& v4_membered(k1_tarski(A)) ) ) ).
fof(fc11_finset_1,axiom,
! [A,B] :
( v1_finset_1(A)
=> v1_finset_1(k3_xboole_0(A,B)) ) ).
fof(fc11_membered,axiom,
! [A] :
( v4_ordinal2(A)
=> ( v1_membered(k1_tarski(A))
& v2_membered(k1_tarski(A))
& v3_membered(k1_tarski(A))
& v4_membered(k1_tarski(A))
& v5_membered(k1_tarski(A)) ) ) ).
fof(fc12_membered,axiom,
! [A,B] :
( ( v1_xcmplx_0(A)
& v1_xcmplx_0(B) )
=> v1_membered(k2_tarski(A,B)) ) ).
fof(fc13_membered,axiom,
! [A,B] :
( ( v1_xreal_0(A)
& v1_xreal_0(B) )
=> ( v1_membered(k2_tarski(A,B))
& v2_membered(k2_tarski(A,B)) ) ) ).
fof(fc14_finset_1,axiom,
! [A,B] :
( ( v1_finset_1(A)
& v1_finset_1(B) )
=> v1_finset_1(k2_zfmisc_1(A,B)) ) ).
fof(fc14_membered,axiom,
! [A,B] :
( ( v1_rat_1(A)
& v1_rat_1(B) )
=> ( v1_membered(k2_tarski(A,B))
& v2_membered(k2_tarski(A,B))
& v3_membered(k2_tarski(A,B)) ) ) ).
fof(fc15_membered,axiom,
! [A,B] :
( ( v1_int_1(A)
& v1_int_1(B) )
=> ( v1_membered(k2_tarski(A,B))
& v2_membered(k2_tarski(A,B))
& v3_membered(k2_tarski(A,B))
& v4_membered(k2_tarski(A,B)) ) ) ).
fof(fc16_membered,axiom,
! [A,B] :
( ( v4_ordinal2(A)
& v4_ordinal2(B) )
=> ( v1_membered(k2_tarski(A,B))
& v2_membered(k2_tarski(A,B))
& v3_membered(k2_tarski(A,B))
& v4_membered(k2_tarski(A,B))
& v5_membered(k2_tarski(A,B)) ) ) ).
fof(fc1_finset_1,axiom,
! [A] :
( ~ v1_xboole_0(k1_tarski(A))
& v1_finset_1(k1_tarski(A)) ) ).
fof(fc1_finsub_1,axiom,
! [A] :
( ~ v1_xboole_0(k1_zfmisc_1(A))
& v1_finsub_1(k1_zfmisc_1(A))
& v3_finsub_1(k1_zfmisc_1(A))
& v4_finsub_1(k1_zfmisc_1(A)) ) ).
fof(fc1_lopclset,axiom,
! [A] :
( ( ~ v3_struct_0(A)
& v2_pre_topc(A)
& l1_pre_topc(A) )
=> ~ v1_xboole_0(k1_lopclset(A)) ) ).
fof(fc1_pre_topc,axiom,
! [A] :
( l1_struct_0(A)
=> ( v1_xboole_0(k1_pre_topc(A))
& v1_membered(k1_pre_topc(A))
& v2_membered(k1_pre_topc(A))
& v3_membered(k1_pre_topc(A))
& v4_membered(k1_pre_topc(A))
& v5_membered(k1_pre_topc(A)) ) ) ).
fof(fc1_struct_0,axiom,
! [A] :
( ( ~ v3_struct_0(A)
& l1_struct_0(A) )
=> ~ v1_xboole_0(u1_struct_0(A)) ) ).
fof(fc22_membered,axiom,
! [A,B] :
( ( v1_membered(A)
& v1_membered(B) )
=> v1_membered(k2_xboole_0(A,B)) ) ).
fof(fc23_membered,axiom,
! [A,B] :
( ( v2_membered(A)
& v2_membered(B) )
=> ( v1_membered(k2_xboole_0(A,B))
& v2_membered(k2_xboole_0(A,B)) ) ) ).
fof(fc24_membered,axiom,
! [A,B] :
( ( v3_membered(A)
& v3_membered(B) )
=> ( v1_membered(k2_xboole_0(A,B))
& v2_membered(k2_xboole_0(A,B))
& v3_membered(k2_xboole_0(A,B)) ) ) ).
fof(fc25_membered,axiom,
! [A,B] :
( ( v4_membered(A)
& v4_membered(B) )
=> ( v1_membered(k2_xboole_0(A,B))
& v2_membered(k2_xboole_0(A,B))
& v3_membered(k2_xboole_0(A,B))
& v4_membered(k2_xboole_0(A,B)) ) ) ).
fof(fc26_membered,axiom,
! [A,B] :
( ( v5_membered(A)
& v5_membered(B) )
=> ( v1_membered(k2_xboole_0(A,B))
& v2_membered(k2_xboole_0(A,B))
& v3_membered(k2_xboole_0(A,B))
& v4_membered(k2_xboole_0(A,B))
& v5_membered(k2_xboole_0(A,B)) ) ) ).
fof(fc27_membered,axiom,
! [A,B] :
( v1_membered(A)
=> v1_membered(k3_xboole_0(A,B)) ) ).
fof(fc28_membered,axiom,
! [A,B] :
( v1_membered(A)
=> v1_membered(k3_xboole_0(B,A)) ) ).
fof(fc29_membered,axiom,
! [A,B] :
( v2_membered(A)
=> ( v1_membered(k3_xboole_0(A,B))
& v2_membered(k3_xboole_0(A,B)) ) ) ).
fof(fc2_finset_1,axiom,
! [A,B] :
( ~ v1_xboole_0(k2_tarski(A,B))
& v1_finset_1(k2_tarski(A,B)) ) ).
fof(fc2_pre_topc,axiom,
! [A] :
( ( ~ v3_struct_0(A)
& l1_struct_0(A) )
=> ~ v1_xboole_0(k2_pre_topc(A)) ) ).
fof(fc30_membered,axiom,
! [A,B] :
( v2_membered(A)
=> ( v1_membered(k3_xboole_0(B,A))
& v2_membered(k3_xboole_0(B,A)) ) ) ).
fof(fc31_membered,axiom,
! [A,B] :
( v3_membered(A)
=> ( v1_membered(k3_xboole_0(A,B))
& v2_membered(k3_xboole_0(A,B))
& v3_membered(k3_xboole_0(A,B)) ) ) ).
fof(fc32_membered,axiom,
! [A,B] :
( v3_membered(A)
=> ( v1_membered(k3_xboole_0(B,A))
& v2_membered(k3_xboole_0(B,A))
& v3_membered(k3_xboole_0(B,A)) ) ) ).
fof(fc33_membered,axiom,
! [A,B] :
( v4_membered(A)
=> ( v1_membered(k3_xboole_0(A,B))
& v2_membered(k3_xboole_0(A,B))
& v3_membered(k3_xboole_0(A,B))
& v4_membered(k3_xboole_0(A,B)) ) ) ).
fof(fc34_membered,axiom,
! [A,B] :
( v4_membered(A)
=> ( v1_membered(k3_xboole_0(B,A))
& v2_membered(k3_xboole_0(B,A))
& v3_membered(k3_xboole_0(B,A))
& v4_membered(k3_xboole_0(B,A)) ) ) ).
fof(fc35_membered,axiom,
! [A,B] :
( v5_membered(A)
=> ( v1_membered(k3_xboole_0(A,B))
& v2_membered(k3_xboole_0(A,B))
& v3_membered(k3_xboole_0(A,B))
& v4_membered(k3_xboole_0(A,B))
& v5_membered(k3_xboole_0(A,B)) ) ) ).
fof(fc36_membered,axiom,
! [A,B] :
( v5_membered(A)
=> ( v1_membered(k3_xboole_0(B,A))
& v2_membered(k3_xboole_0(B,A))
& v3_membered(k3_xboole_0(B,A))
& v4_membered(k3_xboole_0(B,A))
& v5_membered(k3_xboole_0(B,A)) ) ) ).
fof(fc3_lattices,axiom,
! [A,B,C] :
( ( ~ v1_xboole_0(A)
& v1_funct_1(B)
& v1_funct_2(B,k2_zfmisc_1(A,A),A)
& m1_relset_1(B,k2_zfmisc_1(A,A),A)
& v1_funct_1(C)
& v1_funct_2(C,k2_zfmisc_1(A,A),A)
& m1_relset_1(C,k2_zfmisc_1(A,A),A) )
=> ( ~ v3_struct_0(g3_lattices(A,B,C))
& v3_lattices(g3_lattices(A,B,C)) ) ) ).
fof(fc5_pre_topc,axiom,
! [A] :
( ( v2_pre_topc(A)
& l1_pre_topc(A) )
=> v4_pre_topc(k2_pre_topc(A),A) ) ).
fof(fc6_membered,axiom,
( v1_xboole_0(k1_xboole_0)
& v1_membered(k1_xboole_0)
& v2_membered(k1_xboole_0)
& v3_membered(k1_xboole_0)
& v4_membered(k1_xboole_0)
& v5_membered(k1_xboole_0) ) ).
fof(fc7_membered,axiom,
! [A] :
( v1_xcmplx_0(A)
=> v1_membered(k1_tarski(A)) ) ).
fof(fc8_membered,axiom,
! [A] :
( v1_xreal_0(A)
=> ( v1_membered(k1_tarski(A))
& v2_membered(k1_tarski(A)) ) ) ).
fof(fc9_finset_1,axiom,
! [A,B] :
( ( v1_finset_1(A)
& v1_finset_1(B) )
=> v1_finset_1(k2_xboole_0(A,B)) ) ).
fof(fc9_membered,axiom,
! [A] :
( v1_rat_1(A)
=> ( v1_membered(k1_tarski(A))
& v2_membered(k1_tarski(A))
& v3_membered(k1_tarski(A)) ) ) ).
fof(fraenkel_a_1_0_lopclset,axiom,
! [A,B] :
( ( ~ v3_struct_0(B)
& l1_pre_topc(B) )
=> ( r2_hidden(A,a_1_0_lopclset(B))
<=> ? [C] :
( m1_subset_1(C,k1_zfmisc_1(u1_struct_0(B)))
& A = C
& v3_pre_topc(C,B)
& v4_pre_topc(C,B) ) ) ) ).
fof(free_g3_lattices,axiom,
! [A,B,C] :
( ( v1_funct_1(B)
& v1_funct_2(B,k2_zfmisc_1(A,A),A)
& m1_relset_1(B,k2_zfmisc_1(A,A),A)
& v1_funct_1(C)
& v1_funct_2(C,k2_zfmisc_1(A,A),A)
& m1_relset_1(C,k2_zfmisc_1(A,A),A) )
=> ! [D,E,F] :
( g3_lattices(A,B,C) = g3_lattices(D,E,F)
=> ( A = D
& B = E
& C = F ) ) ) ).
fof(idempotence_k1_finsub_1,axiom,
! [A,B,C] :
( ( ~ v1_xboole_0(A)
& v4_finsub_1(A)
& m1_subset_1(B,A)
& m1_subset_1(C,A) )
=> k1_finsub_1(A,B,B) = B ) ).
fof(idempotence_k2_lopclset,axiom,
! [A,B,C] :
( ( ~ v3_struct_0(A)
& v2_pre_topc(A)
& l1_pre_topc(A)
& m1_subset_1(B,k1_lopclset(A))
& m1_subset_1(C,k1_lopclset(A)) )
=> k2_lopclset(A,B,B) = B ) ).
fof(idempotence_k2_xboole_0,axiom,
! [A,B] : k2_xboole_0(A,A) = A ).
fof(idempotence_k3_finsub_1,axiom,
! [A,B,C] :
( ( ~ v1_xboole_0(A)
& v4_finsub_1(A)
& m1_subset_1(B,A)
& m1_subset_1(C,A) )
=> k3_finsub_1(A,B,B) = B ) ).
fof(idempotence_k3_lopclset,axiom,
! [A,B,C] :
( ( ~ v3_struct_0(A)
& v2_pre_topc(A)
& l1_pre_topc(A)
& m1_subset_1(B,k1_lopclset(A))
& m1_subset_1(C,k1_lopclset(A)) )
=> k3_lopclset(A,B,B) = B ) ).
fof(idempotence_k3_xboole_0,axiom,
! [A,B] : k3_xboole_0(A,A) = A ).
fof(idempotence_k4_subset_1,axiom,
! [A,B,C] :
( ( m1_subset_1(B,k1_zfmisc_1(A))
& m1_subset_1(C,k1_zfmisc_1(A)) )
=> k4_subset_1(A,B,B) = B ) ).
fof(involutiveness_k3_subset_1,axiom,
! [A,B] :
( m1_subset_1(B,k1_zfmisc_1(A))
=> k3_subset_1(A,k3_subset_1(A,B)) = B ) ).
fof(rc10_lattices,axiom,
? [A] :
( l3_lattices(A)
& ~ v3_struct_0(A)
& v3_lattices(A)
& v4_lattices(A)
& v5_lattices(A)
& v6_lattices(A)
& v7_lattices(A)
& v8_lattices(A)
& v9_lattices(A)
& v10_lattices(A)
& v11_lattices(A)
& v12_lattices(A)
& v13_lattices(A)
& v14_lattices(A) ) ).
fof(rc11_lattices,axiom,
? [A] :
( l3_lattices(A)
& ~ v3_struct_0(A)
& v3_lattices(A)
& v4_lattices(A)
& v5_lattices(A)
& v6_lattices(A)
& v7_lattices(A)
& v8_lattices(A)
& v9_lattices(A)
& v10_lattices(A)
& v13_lattices(A)
& v14_lattices(A)
& v15_lattices(A) ) ).
fof(rc12_lattices,axiom,
? [A] :
( l3_lattices(A)
& ~ v3_struct_0(A)
& v3_lattices(A)
& v4_lattices(A)
& v5_lattices(A)
& v6_lattices(A)
& v7_lattices(A)
& v8_lattices(A)
& v9_lattices(A)
& v10_lattices(A)
& v13_lattices(A)
& v14_lattices(A)
& v15_lattices(A)
& v16_lattices(A) ) ).
fof(rc13_lattices,axiom,
? [A] :
( l3_lattices(A)
& ~ v3_struct_0(A)
& v3_lattices(A)
& v4_lattices(A)
& v5_lattices(A)
& v6_lattices(A)
& v7_lattices(A)
& v8_lattices(A)
& v9_lattices(A)
& v10_lattices(A)
& v11_lattices(A)
& v13_lattices(A)
& v14_lattices(A)
& v15_lattices(A)
& v16_lattices(A)
& v17_lattices(A) ) ).
fof(rc1_finset_1,axiom,
? [A] :
( ~ v1_xboole_0(A)
& v1_finset_1(A) ) ).
fof(rc1_funct_2,axiom,
! [A,B] :
? [C] :
( m1_relset_1(C,A,B)
& v1_relat_1(C)
& v1_funct_1(C)
& v1_funct_2(C,A,B) ) ).
fof(rc1_membered,axiom,
? [A] :
( ~ v1_xboole_0(A)
& v1_membered(A)
& v2_membered(A)
& v3_membered(A)
& v4_membered(A)
& v5_membered(A) ) ).
fof(rc2_partfun1,axiom,
! [A,B] :
? [C] :
( m1_relset_1(C,A,B)
& v1_relat_1(C)
& v1_funct_1(C) ) ).
fof(rc3_finset_1,axiom,
! [A] :
( ~ v1_xboole_0(A)
=> ? [B] :
( m1_subset_1(B,k1_zfmisc_1(A))
& ~ v1_xboole_0(B)
& v1_finset_1(B) ) ) ).
fof(rc3_lattices,axiom,
? [A] :
( l3_lattices(A)
& v3_lattices(A) ) ).
fof(rc3_struct_0,axiom,
? [A] :
( l1_struct_0(A)
& ~ v3_struct_0(A) ) ).
fof(rc4_finset_1,axiom,
! [A] :
( ~ v1_xboole_0(A)
=> ? [B] :
( m1_subset_1(B,k1_zfmisc_1(A))
& ~ v1_xboole_0(B)
& v1_finset_1(B) ) ) ).
fof(rc5_struct_0,axiom,
! [A] :
( ( ~ v3_struct_0(A)
& l1_struct_0(A) )
=> ? [B] :
( m1_subset_1(B,k1_zfmisc_1(u1_struct_0(A)))
& ~ v1_xboole_0(B) ) ) ).
fof(rc6_lattices,axiom,
? [A] :
( l3_lattices(A)
& ~ v3_struct_0(A)
& v3_lattices(A) ) ).
fof(rc6_pre_topc,axiom,
! [A] :
( ( v2_pre_topc(A)
& l1_pre_topc(A) )
=> ? [B] :
( m1_subset_1(B,k1_zfmisc_1(u1_struct_0(A)))
& v4_pre_topc(B,A) ) ) ).
fof(rc7_pre_topc,axiom,
! [A] :
( ( ~ v3_struct_0(A)
& v2_pre_topc(A)
& l1_pre_topc(A) )
=> ? [B] :
( m1_subset_1(B,k1_zfmisc_1(u1_struct_0(A)))
& ~ v1_xboole_0(B)
& v4_pre_topc(B,A) ) ) ).
fof(rc9_lattices,axiom,
? [A] :
( l3_lattices(A)
& ~ v3_struct_0(A)
& v3_lattices(A)
& v4_lattices(A)
& v5_lattices(A)
& v6_lattices(A)
& v7_lattices(A)
& v8_lattices(A)
& v9_lattices(A)
& v10_lattices(A) ) ).
fof(redefinition_k1_finsub_1,axiom,
! [A,B,C] :
( ( ~ v1_xboole_0(A)
& v4_finsub_1(A)
& m1_subset_1(B,A)
& m1_subset_1(C,A) )
=> k1_finsub_1(A,B,C) = k2_xboole_0(B,C) ) ).
fof(redefinition_k2_binop_1,axiom,
! [A,B,C,D,E,F] :
( ( ~ v1_xboole_0(A)
& ~ v1_xboole_0(B)
& v1_funct_1(D)
& v1_funct_2(D,k2_zfmisc_1(A,B),C)
& m1_relset_1(D,k2_zfmisc_1(A,B),C)
& m1_subset_1(E,A)
& m1_subset_1(F,B) )
=> k2_binop_1(A,B,C,D,E,F) = k1_binop_1(D,E,F) ) ).
fof(redefinition_k2_lopclset,axiom,
! [A,B,C] :
( ( ~ v3_struct_0(A)
& v2_pre_topc(A)
& l1_pre_topc(A)
& m1_subset_1(B,k1_lopclset(A))
& m1_subset_1(C,k1_lopclset(A)) )
=> k2_lopclset(A,B,C) = k2_xboole_0(B,C) ) ).
fof(redefinition_k3_finsub_1,axiom,
! [A,B,C] :
( ( ~ v1_xboole_0(A)
& v4_finsub_1(A)
& m1_subset_1(B,A)
& m1_subset_1(C,A) )
=> k3_finsub_1(A,B,C) = k3_xboole_0(B,C) ) ).
fof(redefinition_k3_lattices,axiom,
! [A,B,C] :
( ( ~ v3_struct_0(A)
& v4_lattices(A)
& l2_lattices(A)
& m1_subset_1(B,u1_struct_0(A))
& m1_subset_1(C,u1_struct_0(A)) )
=> k3_lattices(A,B,C) = k1_lattices(A,B,C) ) ).
fof(redefinition_k3_lopclset,axiom,
! [A,B,C] :
( ( ~ v3_struct_0(A)
& v2_pre_topc(A)
& l1_pre_topc(A)
& m1_subset_1(B,k1_lopclset(A))
& m1_subset_1(C,k1_lopclset(A)) )
=> k3_lopclset(A,B,C) = k3_xboole_0(B,C) ) ).
fof(redefinition_k4_lattices,axiom,
! [A,B,C] :
( ( ~ v3_struct_0(A)
& v6_lattices(A)
& l1_lattices(A)
& m1_subset_1(B,u1_struct_0(A))
& m1_subset_1(C,u1_struct_0(A)) )
=> k4_lattices(A,B,C) = k2_lattices(A,B,C) ) ).
fof(redefinition_k4_subset_1,axiom,
! [A,B,C] :
( ( m1_subset_1(B,k1_zfmisc_1(A))
& m1_subset_1(C,k1_zfmisc_1(A)) )
=> k4_subset_1(A,B,C) = k2_xboole_0(B,C) ) ).
fof(redefinition_m2_relset_1,axiom,
! [A,B,C] :
( m2_relset_1(C,A,B)
<=> m1_relset_1(C,A,B) ) ).
fof(redefinition_m2_subset_1,axiom,
! [A,B] :
( ( ~ v1_xboole_0(A)
& ~ v1_xboole_0(B)
& m1_subset_1(B,k1_zfmisc_1(A)) )
=> ! [C] :
( m2_subset_1(C,A,B)
<=> m1_subset_1(C,B) ) ) ).
fof(reflexivity_r1_tarski,axiom,
! [A,B] : r1_tarski(A,A) ).
fof(symmetry_r1_xboole_0,axiom,
! [A,B] :
( r1_xboole_0(A,B)
=> r1_xboole_0(B,A) ) ).
fof(t18_pre_topc,axiom,
! [A] :
( l1_struct_0(A)
=> ! [B] :
( m1_subset_1(B,k1_zfmisc_1(u1_struct_0(A)))
=> k4_subset_1(u1_struct_0(A),B,k3_subset_1(u1_struct_0(A),B)) = k2_pre_topc(A) ) ) ).
fof(t1_boole,axiom,
! [A] : k2_xboole_0(A,k1_xboole_0) = A ).
fof(t1_subset,axiom,
! [A,B] :
( r2_hidden(A,B)
=> m1_subset_1(A,B) ) ).
fof(t23_xboole_1,axiom,
! [A,B,C] : k3_xboole_0(A,k2_xboole_0(B,C)) = k2_xboole_0(k3_xboole_0(A,B),k3_xboole_0(A,C)) ).
fof(t26_subset_1,axiom,
! [A,B] :
( m1_subset_1(B,k1_zfmisc_1(A))
=> r1_xboole_0(B,k3_subset_1(A,B)) ) ).
fof(t2_boole,axiom,
! [A] : k3_xboole_0(A,k1_xboole_0) = k1_xboole_0 ).
fof(t2_subset,axiom,
! [A,B] :
( m1_subset_1(A,B)
=> ( v1_xboole_0(B)
| r2_hidden(A,B) ) ) ).
fof(t2_tarski,axiom,
! [A,B] :
( ! [C] :
( r2_hidden(C,A)
<=> r2_hidden(C,B) )
=> A = B ) ).
fof(t2_tops_1,axiom,
! [A] :
( l1_struct_0(A)
=> ! [B] :
( m1_subset_1(B,k1_zfmisc_1(u1_struct_0(A)))
=> k4_subset_1(u1_struct_0(A),B,k2_pre_topc(A)) = k2_pre_topc(A) ) ) ).
fof(t3_subset,axiom,
! [A,B] :
( m1_subset_1(A,k1_zfmisc_1(B))
<=> r1_tarski(A,B) ) ).
fof(t4_subset,axiom,
! [A,B,C] :
( ( r2_hidden(A,B)
& m1_subset_1(B,k1_zfmisc_1(C)) )
=> m1_subset_1(A,C) ) ).
fof(t5_lopclset,axiom,
! [A] :
( ( ~ v3_struct_0(A)
& v2_pre_topc(A)
& l1_pre_topc(A) )
=> ! [B] :
( m1_subset_1(B,u1_struct_0(g3_lattices(k1_lopclset(A),k4_lopclset(A),k5_lopclset(A))))
=> ! [C] :
( m1_subset_1(C,u1_struct_0(g3_lattices(k1_lopclset(A),k4_lopclset(A),k5_lopclset(A))))
=> ! [D] :
( m2_subset_1(D,k1_zfmisc_1(u1_struct_0(A)),k1_lopclset(A))
=> ! [E] :
( m2_subset_1(E,k1_zfmisc_1(u1_struct_0(A)),k1_lopclset(A))
=> ( ( B = D
& C = E )
=> k1_lattices(g3_lattices(k1_lopclset(A),k4_lopclset(A),k5_lopclset(A)),B,C) = k2_lopclset(A,D,E) ) ) ) ) ) ) ).
fof(t5_subset,axiom,
! [A,B,C] :
~ ( r2_hidden(A,B)
& m1_subset_1(B,k1_zfmisc_1(C))
& v1_xboole_0(C) ) ).
fof(t6_boole,axiom,
! [A] :
( v1_xboole_0(A)
=> A = k1_xboole_0 ) ).
fof(t6_lopclset,axiom,
! [A] :
( ( ~ v3_struct_0(A)
& v2_pre_topc(A)
& l1_pre_topc(A) )
=> ! [B] :
( m1_subset_1(B,u1_struct_0(g3_lattices(k1_lopclset(A),k4_lopclset(A),k5_lopclset(A))))
=> ! [C] :
( m1_subset_1(C,u1_struct_0(g3_lattices(k1_lopclset(A),k4_lopclset(A),k5_lopclset(A))))
=> ! [D] :
( m2_subset_1(D,k1_zfmisc_1(u1_struct_0(A)),k1_lopclset(A))
=> ! [E] :
( m2_subset_1(E,k1_zfmisc_1(u1_struct_0(A)),k1_lopclset(A))
=> ( ( B = D
& C = E )
=> k2_lattices(g3_lattices(k1_lopclset(A),k4_lopclset(A),k5_lopclset(A)),B,C) = k3_lopclset(A,D,E) ) ) ) ) ) ) ).
fof(t7_boole,axiom,
! [A,B] :
~ ( r2_hidden(A,B)
& v1_xboole_0(B) ) ).
fof(t7_lopclset,axiom,
! [A] :
( ( ~ v3_struct_0(A)
& v2_pre_topc(A)
& l1_pre_topc(A) )
=> m2_subset_1(k1_pre_topc(A),k1_zfmisc_1(u1_struct_0(A)),k1_lopclset(A)) ) ).
fof(t8_boole,axiom,
! [A,B] :
~ ( v1_xboole_0(A)
& A != B
& v1_xboole_0(B) ) ).
fof(t8_lopclset,axiom,
! [A] :
( ( ~ v3_struct_0(A)
& v2_pre_topc(A)
& l1_pre_topc(A) )
=> m2_subset_1(k2_pre_topc(A),k1_zfmisc_1(u1_struct_0(A)),k1_lopclset(A)) ) ).
fof(t9_lopclset,axiom,
! [A] :
( ( ~ v3_struct_0(A)
& v2_pre_topc(A)
& l1_pre_topc(A) )
=> ! [B] :
( m2_subset_1(B,k1_zfmisc_1(u1_struct_0(A)),k1_lopclset(A))
=> m2_subset_1(k3_subset_1(u1_struct_0(A),B),k1_zfmisc_1(u1_struct_0(A)),k1_lopclset(A)) ) ) ).
%------------------------------------------------------------------------------