TPTP Problem File: LAT278-2.p
View Solutions
- Solve Problem
%------------------------------------------------------------------------------
% File : LAT278-2 : TPTP v9.0.0. Released v3.2.0.
% Domain : Analysis
% Problem : Problem about Tarski's fixed point theorem
% Version : [Pau06] axioms : Reduced > Especial.
% English :
% Refs : [Pau06] Paulson (2006), Email to G. Sutcliffe
% Source : [Pau06]
% Names :
% Status : Unsatisfiable
% Rating : 0.00 v5.3.0, 0.08 v5.2.0, 0.00 v4.1.0, 0.11 v4.0.1, 0.17 v3.3.0, 0.14 v3.2.0
% Syntax : Number of clauses : 5 ( 4 unt; 0 nHn; 5 RR)
% Number of literals : 6 ( 2 equ; 2 neg)
% Maximal clause size : 2 ( 1 avg)
% Maximal term depth : 2 ( 1 avg)
% Number of predicates : 3 ( 2 usr; 0 prp; 2-3 aty)
% Number of functors : 9 ( 9 usr; 6 con; 0-3 aty)
% Number of variables : 2 ( 0 sgn)
% SPC : CNF_UNS_RFO_SEQ_HRN
% Comments : The problems in the [Pau06] collection each have very many axioms,
% of which only a small selection are required for the refutation.
% The mission is to find those few axioms, after which a refutation
% can be quite easily found. This version has only the necessary
% axioms.
%------------------------------------------------------------------------------
cnf(cls_conjecture_0,negated_conjecture,
~ c_Relation_Orefl(v_A,v_r,t_a) ).
cnf(cls_Tarski_OA_A_61_61_Apset_Acl_0,axiom,
v_A = c_Tarski_Opotype_Opset(v_cl,t_a,tc_Product__Type_Ounit) ).
cnf(cls_Tarski_OPartialOrder__iff_0,axiom,
( ~ c_in(V_P,c_Tarski_OPartialOrder,tc_Tarski_Opotype_Opotype__ext__type(T_a,tc_Product__Type_Ounit))
| c_Relation_Orefl(c_Tarski_Opotype_Opset(V_P,T_a,tc_Product__Type_Ounit),c_Tarski_Opotype_Oorder(V_P,T_a,tc_Product__Type_Ounit),T_a) ) ).
cnf(cls_Tarski_Ocl_A_58_APartialOrder_0,axiom,
c_in(v_cl,c_Tarski_OPartialOrder,tc_Tarski_Opotype_Opotype__ext__type(t_a,tc_Product__Type_Ounit)) ).
cnf(cls_Tarski_Or_A_61_61_Aorder_Acl_0,axiom,
v_r = c_Tarski_Opotype_Oorder(v_cl,t_a,tc_Product__Type_Ounit) ).
%------------------------------------------------------------------------------