TPTP Problem File: LAT276-2.p
View Solutions
- Solve Problem
%------------------------------------------------------------------------------
% File : LAT276-2 : TPTP v9.0.0. Released v3.2.0.
% Domain : Analysis
% Problem : Problem about Tarski's fixed point theorem
% Version : [Pau06] axioms : Reduced > Especial.
% English :
% Refs : [Pau06] Paulson (2006), Email to G. Sutcliffe
% Source : [Pau06]
% Names :
% Status : Unsatisfiable
% Rating : 0.10 v9.0.0, 0.15 v8.2.0, 0.10 v8.1.0, 0.00 v7.5.0, 0.05 v7.4.0, 0.12 v7.3.0, 0.08 v7.0.0, 0.13 v6.4.0, 0.07 v6.3.0, 0.00 v5.5.0, 0.15 v5.4.0, 0.20 v5.3.0, 0.11 v5.2.0, 0.06 v5.0.0, 0.07 v4.1.0, 0.08 v4.0.1, 0.00 v4.0.0, 0.09 v3.7.0, 0.10 v3.5.0, 0.09 v3.4.0, 0.25 v3.3.0, 0.21 v3.2.0
% Syntax : Number of clauses : 12 ( 3 unt; 3 nHn; 12 RR)
% Number of literals : 29 ( 2 equ; 15 neg)
% Maximal clause size : 4 ( 2 avg)
% Maximal term depth : 3 ( 1 avg)
% Number of predicates : 3 ( 2 usr; 0 prp; 2-3 aty)
% Number of functors : 14 ( 14 usr; 7 con; 0-4 aty)
% Number of variables : 12 ( 0 sgn)
% SPC : CNF_UNS_RFO_SEQ_NHN
% Comments : The problems in the [Pau06] collection each have very many axioms,
% of which only a small selection are required for the refutation.
% The mission is to find those few axioms, after which a refutation
% can be quite easily found. This version has only the necessary
% axioms.
%------------------------------------------------------------------------------
cnf(cls_conjecture_0,negated_conjecture,
c_lessequals(v_S,v_A,tc_set(t_a)) ).
cnf(cls_conjecture_10,negated_conjecture,
( c_in(c_Pair(V_V,v_xa,t_a,t_a),c_Tarski_Opotype_Oorder(v_cl,t_a,tc_Product__Type_Ounit),tc_prod(t_a,t_a))
| ~ c_in(V_V,v_S,t_a)
| ~ c_in(c_Pair(v_xa,c_Tarski_Olub(v_S,v_cl,t_a),t_a,t_a),c_Tarski_Opotype_Oorder(v_cl,t_a,tc_Product__Type_Ounit),tc_prod(t_a,t_a)) ) ).
cnf(cls_conjecture_3,negated_conjecture,
( c_in(v_xa,c_Tarski_Opotype_Opset(v_cl,t_a,tc_Product__Type_Ounit),t_a)
| c_in(v_xa,v_S,t_a) ) ).
cnf(cls_conjecture_4,negated_conjecture,
( ~ c_in(c_Pair(c_Tarski_Olub(v_S,v_cl,t_a),v_xa,t_a,t_a),c_Tarski_Opotype_Oorder(v_cl,t_a,tc_Product__Type_Ounit),tc_prod(t_a,t_a))
| c_in(v_xa,v_S,t_a) ) ).
cnf(cls_conjecture_6,negated_conjecture,
( ~ c_in(c_Pair(c_Tarski_Olub(v_S,v_cl,t_a),v_xa,t_a,t_a),c_Tarski_Opotype_Oorder(v_cl,t_a,tc_Product__Type_Ounit),tc_prod(t_a,t_a))
| ~ c_in(c_Pair(v_xa,c_Tarski_Olub(v_S,v_cl,t_a),t_a,t_a),c_Tarski_Opotype_Oorder(v_cl,t_a,tc_Product__Type_Ounit),tc_prod(t_a,t_a)) ) ).
cnf(cls_conjecture_9,negated_conjecture,
( c_in(c_Pair(V_U,v_xa,t_a,t_a),c_Tarski_Opotype_Oorder(v_cl,t_a,tc_Product__Type_Ounit),tc_prod(t_a,t_a))
| ~ c_in(V_U,v_S,t_a)
| c_in(v_xa,v_S,t_a) ) ).
cnf(cls_Set_OsubsetD_0,axiom,
( ~ c_in(V_c,V_A,T_a)
| ~ c_lessequals(V_A,V_B,tc_set(T_a))
| c_in(V_c,V_B,T_a) ) ).
cnf(cls_Tarski_OA_A_61_61_Apset_Acl_0,axiom,
v_A = c_Tarski_Opotype_Opset(v_cl,t_a,tc_Product__Type_Ounit) ).
cnf(cls_Tarski_O_91_124_AS1_A_60_61_AA_59_AL1_A_58_AA_59_AALL_Ax_58S1_O_A_Ix_M_AL1_J_A_58_Ar_A_124_93_A_61_61_62_A_Ilub_AS1_Acl_M_AL1_J_A_58_Ar_A_61_61_ATrue_0,axiom,
( ~ c_in(V_L,v_A,t_a)
| ~ c_lessequals(V_S,v_A,tc_set(t_a))
| c_in(c_Pair(c_Tarski_Olub(V_S,v_cl,t_a),V_L,t_a,t_a),v_r,tc_prod(t_a,t_a))
| c_in(v_sko__4mP(V_L,V_S,v_r),V_S,t_a) ) ).
cnf(cls_Tarski_O_91_124_AS1_A_60_61_AA_59_AL1_A_58_AA_59_AALL_Ax_58S1_O_A_Ix_M_AL1_J_A_58_Ar_A_124_93_A_61_61_62_A_Ilub_AS1_Acl_M_AL1_J_A_58_Ar_A_61_61_ATrue_1,axiom,
( ~ c_in(V_L,v_A,t_a)
| ~ c_in(c_Pair(v_sko__4mP(V_L,V_S,v_r),V_L,t_a,t_a),v_r,tc_prod(t_a,t_a))
| ~ c_lessequals(V_S,v_A,tc_set(t_a))
| c_in(c_Pair(c_Tarski_Olub(V_S,v_cl,t_a),V_L,t_a,t_a),v_r,tc_prod(t_a,t_a)) ) ).
cnf(cls_Tarski_O_91_124_AS1_A_60_61_AA_59_Ax1_A_58_AS1_A_124_93_A_61_61_62_A_Ix1_M_Alub_AS1_Acl_J_A_58_Ar_A_61_61_ATrue_0,axiom,
( ~ c_in(V_x,V_S,t_a)
| ~ c_lessequals(V_S,v_A,tc_set(t_a))
| c_in(c_Pair(V_x,c_Tarski_Olub(V_S,v_cl,t_a),t_a,t_a),v_r,tc_prod(t_a,t_a)) ) ).
cnf(cls_Tarski_Or_A_61_61_Aorder_Acl_0,axiom,
v_r = c_Tarski_Opotype_Oorder(v_cl,t_a,tc_Product__Type_Ounit) ).
%------------------------------------------------------------------------------