TPTP Problem File: LAT275-1.p
View Solutions
- Solve Problem
%------------------------------------------------------------------------------
% File : LAT275-1 : TPTP v9.0.0. Released v3.2.0.
% Domain : Analysis
% Problem : Problem about Tarski's fixed point theorem
% Version : [Pau06] axioms : Especial.
% English :
% Refs : [Pau06] Paulson (2006), Email to G. Sutcliffe
% Source : [Pau06]
% Names : Tarski__lubI_1 [Pau06]
% Status : Unsatisfiable
% Rating : 0.15 v8.2.0, 0.10 v8.1.0, 0.11 v7.5.0, 0.16 v7.4.0, 0.18 v7.3.0, 0.08 v7.2.0, 0.17 v7.1.0, 0.08 v7.0.0, 0.27 v6.4.0, 0.20 v6.3.0, 0.09 v6.2.0, 0.30 v6.1.0, 0.43 v6.0.0, 0.30 v5.5.0, 0.60 v5.3.0, 0.56 v5.2.0, 0.50 v5.1.0, 0.53 v5.0.0, 0.43 v4.1.0, 0.38 v4.0.1, 0.36 v3.7.0, 0.40 v3.5.0, 0.36 v3.4.0, 0.50 v3.2.0
% Syntax : Number of clauses : 2752 ( 656 unt; 250 nHn;1977 RR)
% Number of literals : 6033 (1291 equ;3090 neg)
% Maximal clause size : 7 ( 2 avg)
% Maximal term depth : 8 ( 1 avg)
% Number of predicates : 89 ( 88 usr; 0 prp; 1-3 aty)
% Number of functors : 250 ( 250 usr; 51 con; 0-18 aty)
% Number of variables : 5743 (1174 sgn)
% SPC : CNF_UNS_RFO_SEQ_NHN
% Comments : The problems in the [Pau06] collection each have very many axioms,
% of which only a small selection are required for the refutation.
% The mission is to find those few axioms, after which a refutation
% can be quite easily found.
%------------------------------------------------------------------------------
include('Axioms/LAT006-0.ax').
include('Axioms/MSC001-1.ax').
include('Axioms/MSC001-0.ax').
%------------------------------------------------------------------------------
cnf(cls_Tarski_OA_A_61_61_Apset_Acl_0,axiom,
v_A = c_Tarski_Opotype_Opset(v_cl,t_a,tc_Product__Type_Ounit) ).
cnf(cls_Tarski_OS_A_60_61_AA_A_61_61_62_Alub_AS_Acl_A_58_AA_0,axiom,
( ~ c_lessequals(V_S,v_A,tc_set(t_a))
| c_in(c_Tarski_Olub(V_S,v_cl,t_a),v_A,t_a) ) ).
cnf(cls_Tarski_O_91_124_AS1_A_60_61_AA_59_AL1_A_58_AA_59_AALL_Ax_58S1_O_A_Ix_M_AL1_J_A_58_Ar_A_124_93_A_61_61_62_A_Ilub_AS1_Acl_M_AL1_J_A_58_Ar_A_61_61_ATrue_0,axiom,
( ~ c_in(V_L,v_A,t_a)
| ~ c_lessequals(V_S,v_A,tc_set(t_a))
| c_in(c_Pair(c_Tarski_Olub(V_S,v_cl,t_a),V_L,t_a,t_a),v_r,tc_prod(t_a,t_a))
| c_in(v_sko__4mP(V_L,V_S,v_r),V_S,t_a) ) ).
cnf(cls_Tarski_O_91_124_AS1_A_60_61_AA_59_AL1_A_58_AA_59_AALL_Ax_58S1_O_A_Ix_M_AL1_J_A_58_Ar_A_124_93_A_61_61_62_A_Ilub_AS1_Acl_M_AL1_J_A_58_Ar_A_61_61_ATrue_1,axiom,
( ~ c_in(V_L,v_A,t_a)
| ~ c_in(c_Pair(v_sko__4mP(V_L,V_S,v_r),V_L,t_a,t_a),v_r,tc_prod(t_a,t_a))
| ~ c_lessequals(V_S,v_A,tc_set(t_a))
| c_in(c_Pair(c_Tarski_Olub(V_S,v_cl,t_a),V_L,t_a,t_a),v_r,tc_prod(t_a,t_a)) ) ).
cnf(cls_Tarski_O_91_124_AS1_A_60_61_AA_59_Ax1_A_58_AS1_A_124_93_A_61_61_62_A_Ix1_M_Alub_AS1_Acl_J_A_58_Ar_A_61_61_ATrue_0,axiom,
( ~ c_in(V_x,V_S,t_a)
| ~ c_lessequals(V_S,v_A,tc_set(t_a))
| c_in(c_Pair(V_x,c_Tarski_Olub(V_S,v_cl,t_a),t_a,t_a),v_r,tc_prod(t_a,t_a)) ) ).
cnf(cls_Tarski_Ocl1_A_58_ACompleteLattice_A_61_61_62_Aantisym_A_Iorder_Acl1_J_A_61_61_ATrue_0,axiom,
( ~ c_in(V_cl,c_Tarski_OCompleteLattice,tc_Tarski_Opotype_Opotype__ext__type(T_a,tc_Product__Type_Ounit))
| c_Relation_Oantisym(c_Tarski_Opotype_Oorder(V_cl,T_a,tc_Product__Type_Ounit),T_a) ) ).
cnf(cls_Tarski_Ocl1_A_58_ACompleteLattice_A_61_61_62_Arefl_A_Ipset_Acl1_J_A_Iorder_Acl1_J_A_61_61_ATrue_0,axiom,
( ~ c_in(V_cl,c_Tarski_OCompleteLattice,tc_Tarski_Opotype_Opotype__ext__type(T_a,tc_Product__Type_Ounit))
| c_Relation_Orefl(c_Tarski_Opotype_Opset(V_cl,T_a,tc_Product__Type_Ounit),c_Tarski_Opotype_Oorder(V_cl,T_a,tc_Product__Type_Ounit),T_a) ) ).
cnf(cls_Tarski_Ocl1_A_58_ACompleteLattice_A_61_61_62_Atrans_A_Iorder_Acl1_J_A_61_61_ATrue_0,axiom,
( ~ c_in(V_cl,c_Tarski_OCompleteLattice,tc_Tarski_Opotype_Opotype__ext__type(T_a,tc_Product__Type_Ounit))
| c_Relation_Otrans(c_Tarski_Opotype_Oorder(V_cl,T_a,tc_Product__Type_Ounit),T_a) ) ).
cnf(cls_Tarski_Ocl_A_58_ACompleteLattice_A_61_61_ATrue_0,axiom,
c_in(v_cl,c_Tarski_OCompleteLattice,tc_Tarski_Opotype_Opotype__ext__type(t_a,tc_Product__Type_Ounit)) ).
cnf(cls_Tarski_Or_A_61_61_Aorder_Acl_0,axiom,
v_r = c_Tarski_Opotype_Oorder(v_cl,t_a,tc_Product__Type_Ounit) ).
cnf(cls_conjecture_0,negated_conjecture,
c_lessequals(v_S,v_A,tc_set(t_a)) ).
cnf(cls_conjecture_1,negated_conjecture,
c_in(v_L,v_A,t_a) ).
cnf(cls_conjecture_2,negated_conjecture,
~ c_in(c_Tarski_Olub(v_S,v_cl,t_a),c_Tarski_Opotype_Opset(v_cl,t_a,tc_Product__Type_Ounit),t_a) ).
cnf(cls_conjecture_3,negated_conjecture,
( c_in(c_Pair(V_U,v_L,t_a,t_a),v_r,tc_prod(t_a,t_a))
| ~ c_in(V_U,v_S,t_a) ) ).
cnf(cls_conjecture_4,negated_conjecture,
( c_in(c_Pair(v_L,V_U,t_a,t_a),v_r,tc_prod(t_a,t_a))
| c_in(v_x(V_U),v_S,t_a)
| ~ c_in(V_U,v_A,t_a) ) ).
cnf(cls_conjecture_5,negated_conjecture,
( c_in(c_Pair(v_L,V_U,t_a,t_a),v_r,tc_prod(t_a,t_a))
| ~ c_in(c_Pair(v_x(V_U),V_U,t_a,t_a),v_r,tc_prod(t_a,t_a))
| ~ c_in(V_U,v_A,t_a) ) ).
%------------------------------------------------------------------------------