TPTP Problem File: LAT272-1.p
View Solutions
- Solve Problem
%------------------------------------------------------------------------------
% File : LAT272-1 : TPTP v9.0.0. Released v3.2.0.
% Domain : Analysis
% Problem : Problem about Tarski's fixed point theorem
% Version : [Pau06] axioms : Especial.
% English :
% Refs : [Pau06] Paulson (2006), Email to G. Sutcliffe
% Source : [Pau06]
% Names : Tarski__L_in_interval_3 [Pau06]
% Status : Unsatisfiable
% Rating : 0.05 v7.4.0, 0.06 v7.3.0, 0.00 v7.0.0, 0.13 v6.4.0, 0.07 v6.3.0, 0.00 v6.2.0, 0.10 v6.1.0, 0.36 v6.0.0, 0.20 v5.5.0, 0.45 v5.3.0, 0.44 v5.2.0, 0.38 v5.1.0, 0.41 v5.0.0, 0.36 v4.1.0, 0.31 v4.0.1, 0.36 v4.0.0, 0.27 v3.7.0, 0.30 v3.5.0, 0.27 v3.4.0, 0.50 v3.3.0, 0.43 v3.2.0
% Syntax : Number of clauses : 2759 ( 659 unt; 253 nHn;1981 RR)
% Number of literals : 6059 (1295 equ;3104 neg)
% Maximal clause size : 7 ( 2 avg)
% Maximal term depth : 8 ( 1 avg)
% Number of predicates : 90 ( 89 usr; 0 prp; 1-4 aty)
% Number of functors : 254 ( 254 usr; 54 con; 0-18 aty)
% Number of variables : 5778 (1180 sgn)
% SPC : CNF_UNS_RFO_SEQ_NHN
% Comments : The problems in the [Pau06] collection each have very many axioms,
% of which only a small selection are required for the refutation.
% The mission is to find those few axioms, after which a refutation
% can be quite easily found.
%------------------------------------------------------------------------------
include('Axioms/LAT006-2.ax').
include('Axioms/LAT006-0.ax').
include('Axioms/MSC001-1.ax').
include('Axioms/MSC001-0.ax').
%------------------------------------------------------------------------------
cnf(cls_conjecture_0,negated_conjecture,
c_in(v_a,v_A,t_a) ).
cnf(cls_conjecture_1,negated_conjecture,
c_in(v_b,v_A,t_a) ).
cnf(cls_conjecture_2,negated_conjecture,
c_lessequals(v_S,c_Tarski_Ointerval(v_r,v_a,v_b,t_a),tc_set(t_a)) ).
cnf(cls_conjecture_3,negated_conjecture,
v_S != c_emptyset ).
cnf(cls_conjecture_4,negated_conjecture,
c_Tarski_OisLub(v_S,v_cl,v_L,t_a) ).
cnf(cls_conjecture_5,negated_conjecture,
c_Tarski_Ointerval(v_r,v_a,v_b,t_a) != c_emptyset ).
cnf(cls_conjecture_6,negated_conjecture,
c_in(v_x,v_S,t_a) ).
cnf(cls_conjecture_7,negated_conjecture,
~ c_in(c_Pair(v_x,v_L,t_a,t_a),v_r,tc_prod(t_a,t_a)) ).
%------------------------------------------------------------------------------