TPTP Problem File: LAT271-2.p
View Solutions
- Solve Problem
%------------------------------------------------------------------------------
% File : LAT271-2 : TPTP v9.0.0. Released v3.2.0.
% Domain : Analysis
% Problem : Problem about Tarski's fixed point theorem
% Version : [Pau06] axioms : Reduced > Especial.
% English :
% Refs : [Pau06] Paulson (2006), Email to G. Sutcliffe
% Source : [Pau06]
% Names :
% Status : Unsatisfiable
% Rating : 0.00 v8.1.0, 0.25 v7.4.0, 0.17 v7.3.0, 0.25 v6.2.0, 0.17 v6.1.0, 0.00 v5.4.0, 0.06 v5.3.0, 0.05 v5.2.0, 0.00 v3.2.0
% Syntax : Number of clauses : 4 ( 3 unt; 0 nHn; 4 RR)
% Number of literals : 6 ( 0 equ; 3 neg)
% Maximal clause size : 3 ( 1 avg)
% Maximal term depth : 2 ( 1 avg)
% Number of predicates : 2 ( 2 usr; 0 prp; 3-3 aty)
% Number of functors : 10 ( 10 usr; 6 con; 0-4 aty)
% Number of variables : 6 ( 1 sgn)
% SPC : CNF_UNS_RFO_NEQ_HRN
% Comments : The problems in the [Pau06] collection each have very many axioms,
% of which only a small selection are required for the refutation.
% The mission is to find those few axioms, after which a refutation
% can be quite easily found. This version has only the necessary
% axioms.
%------------------------------------------------------------------------------
cnf(cls_conjecture_2,negated_conjecture,
c_lessequals(v_S,c_Tarski_Ointerval(v_r,v_a,v_b,t_a),tc_set(t_a)) ).
cnf(cls_conjecture_6,negated_conjecture,
c_in(v_x,v_S,t_a) ).
cnf(cls_conjecture_7,negated_conjecture,
~ c_in(c_Pair(v_a,v_x,t_a,t_a),v_r,tc_prod(t_a,t_a)) ).
cnf(cls_Tarski_O_91_124_AS1_A_60_61_Ainterval_Ar_Aa1_Ab1_59_Ax1_A_58_AS1_A_124_93_A_61_61_62_A_Ia1_M_Ax1_J_A_58_Ar_A_61_61_ATrue_0,axiom,
( ~ c_in(V_x,V_S,T_a)
| ~ c_lessequals(V_S,c_Tarski_Ointerval(V_r,V_a,V_b,T_a),tc_set(T_a))
| c_in(c_Pair(V_a,V_x,T_a,T_a),V_r,tc_prod(T_a,T_a)) ) ).
%------------------------------------------------------------------------------