TPTP Problem File: LAT268-2.p
View Solutions
- Solve Problem
%------------------------------------------------------------------------------
% File : LAT268-2 : TPTP v9.0.0. Released v3.2.0.
% Domain : Analysis
% Problem : Problem about Tarski's fixed point theorem
% Version : [Pau06] axioms : Reduced > Especial.
% English :
% Refs : [Pau06] Paulson (2006), Email to G. Sutcliffe
% Source : [Pau06]
% Names :
% Status : Unsatisfiable
% Rating : 0.00 v5.5.0, 0.06 v5.4.0, 0.07 v5.3.0, 0.17 v5.2.0, 0.00 v4.1.0, 0.11 v4.0.1, 0.17 v3.3.0, 0.14 v3.2.0
% Syntax : Number of clauses : 11 ( 9 unt; 0 nHn; 9 RR)
% Number of literals : 16 ( 4 equ; 6 neg)
% Maximal clause size : 5 ( 1 avg)
% Maximal term depth : 3 ( 1 avg)
% Number of predicates : 3 ( 2 usr; 0 prp; 2-3 aty)
% Number of functors : 18 ( 18 usr; 9 con; 0-4 aty)
% Number of variables : 13 ( 0 sgn)
% SPC : CNF_UNS_RFO_SEQ_HRN
% Comments : The problems in the [Pau06] collection each have very many axioms,
% of which only a small selection are required for the refutation.
% The mission is to find those few axioms, after which a refutation
% can be quite easily found. This version has only the necessary
% axioms.
%------------------------------------------------------------------------------
cnf(cls_conjecture_0,negated_conjecture,
c_lessequals(v_S,v_A,tc_set(t_a)) ).
cnf(cls_conjecture_1,negated_conjecture,
c_in(v_x,v_S,t_a) ).
cnf(cls_conjecture_2,negated_conjecture,
~ c_in(c_Pair(c_Tarski_Oglb(v_S,v_cl,t_a),v_x,t_a,t_a),v_r,tc_prod(t_a,t_a)) ).
cnf(cls_Tarski_OA_A_61_61_Apset_Acl_0,axiom,
v_A = c_Tarski_Opotype_Opset(v_cl,t_a,tc_Product__Type_Ounit) ).
cnf(cls_Tarski_OCL_Olub__upper_0,axiom,
( ~ c_in(V_x,V_S,T_a)
| ~ c_in(V_cl,c_Tarski_OCompleteLattice,tc_Tarski_Opotype_Opotype__ext__type(T_a,tc_Product__Type_Ounit))
| ~ c_in(V_cl,c_Tarski_OPartialOrder,tc_Tarski_Opotype_Opotype__ext__type(T_a,tc_Product__Type_Ounit))
| ~ c_lessequals(V_S,c_Tarski_Opotype_Opset(V_cl,T_a,tc_Product__Type_Ounit),tc_set(T_a))
| c_in(c_Pair(V_x,c_Tarski_Olub(V_S,V_cl,T_a),T_a,T_a),c_Tarski_Opotype_Oorder(V_cl,T_a,tc_Product__Type_Ounit),tc_prod(T_a,T_a)) ) ).
cnf(cls_Tarski_O_Ix1_M_Ay1_J_A_58_Aorder_A_Idual_Acl_J_A_61_61_A_Iy1_M_Ax1_J_A_58_Aorder_Acl_0,axiom,
( ~ c_in(c_Pair(V_x,V_y,T_a,T_a),c_Tarski_Opotype_Oorder(c_Tarski_Odual(V_cl,T_a),T_a,tc_Product__Type_Ounit),tc_prod(T_a,T_a))
| c_in(c_Pair(V_y,V_x,T_a,T_a),c_Tarski_Opotype_Oorder(V_cl,T_a,tc_Product__Type_Ounit),tc_prod(T_a,T_a)) ) ).
cnf(cls_Tarski_Odual_Acl_A_58_ACompleteLattice_0,axiom,
c_in(c_Tarski_Odual(v_cl,t_a),c_Tarski_OCompleteLattice,tc_Tarski_Opotype_Opotype__ext__type(t_a,tc_Product__Type_Ounit)) ).
cnf(cls_Tarski_Odual_Acl_A_58_APartialOrder_0,axiom,
c_in(c_Tarski_Odual(v_cl,t_a),c_Tarski_OPartialOrder,tc_Tarski_Opotype_Opotype__ext__type(t_a,tc_Product__Type_Ounit)) ).
cnf(cls_Tarski_Oglb__dual__lub_0,axiom,
c_Tarski_Oglb(V_S,V_cl,T_a) = c_Tarski_Olub(V_S,c_Tarski_Odual(V_cl,T_a),T_a) ).
cnf(cls_Tarski_Opset_A_Idual_Acl_J_A_61_61_Apset_Acl_0,axiom,
c_Tarski_Opotype_Opset(c_Tarski_Odual(V_cl,T_a),T_a,tc_Product__Type_Ounit) = c_Tarski_Opotype_Opset(V_cl,T_a,tc_Product__Type_Ounit) ).
cnf(cls_Tarski_Or_A_61_61_Aorder_Acl_0,axiom,
v_r = c_Tarski_Opotype_Oorder(v_cl,t_a,tc_Product__Type_Ounit) ).
%------------------------------------------------------------------------------