TPTP Problem File: LAT268-10.p
View Solutions
- Solve Problem
%------------------------------------------------------------------------------
% File : LAT268-10 : TPTP v9.0.0. Released v7.5.0.
% Domain : Puzzles
% Problem : Problem about Tarski's fixed point theorem
% Version : Especial.
% English :
% Refs : [CS18] Claessen & Smallbone (2018), Efficient Encodings of Fi
% : [Sma18] Smallbone (2018), Email to Geoff Sutcliffe
% Source : [Sma18]
% Names :
% Status : Unsatisfiable
% Rating : 0.14 v8.2.0, 0.12 v8.1.0, 0.10 v7.5.0
% Syntax : Number of clauses : 12 ( 12 unt; 0 nHn; 7 RR)
% Number of literals : 12 ( 12 equ; 1 neg)
% Maximal clause size : 1 ( 1 avg)
% Maximal term depth : 8 ( 2 avg)
% Number of predicates : 1 ( 0 usr; 0 prp; 2-2 aty)
% Number of functors : 22 ( 22 usr; 10 con; 0-4 aty)
% Number of variables : 16 ( 1 sgn)
% SPC : CNF_UNS_RFO_PEQ_UEQ
% Comments : Converted from LAT268-2 to UEQ using [CS18].
%------------------------------------------------------------------------------
cnf(ifeq_axiom,axiom,
ifeq(A,A,B,C) = B ).
cnf(cls_conjecture_0,negated_conjecture,
c_lessequals(v_S,v_A,tc_set(t_a)) = true ).
cnf(cls_conjecture_1,negated_conjecture,
c_in(v_x,v_S,t_a) = true ).
cnf(cls_conjecture_2,negated_conjecture,
c_in(c_Pair(c_Tarski_Oglb(v_S,v_cl,t_a),v_x,t_a,t_a),v_r,tc_prod(t_a,t_a)) != true ).
cnf(cls_Tarski_OA_A_61_61_Apset_Acl_0,axiom,
v_A = c_Tarski_Opotype_Opset(v_cl,t_a,tc_Product__Type_Ounit) ).
cnf(cls_Tarski_OCL_Olub__upper_0,axiom,
ifeq(c_lessequals(V_S,c_Tarski_Opotype_Opset(V_cl,T_a,tc_Product__Type_Ounit),tc_set(T_a)),true,ifeq(c_in(V_cl,c_Tarski_OCompleteLattice,tc_Tarski_Opotype_Opotype__ext__type(T_a,tc_Product__Type_Ounit)),true,ifeq(c_in(V_cl,c_Tarski_OPartialOrder,tc_Tarski_Opotype_Opotype__ext__type(T_a,tc_Product__Type_Ounit)),true,ifeq(c_in(V_x,V_S,T_a),true,c_in(c_Pair(V_x,c_Tarski_Olub(V_S,V_cl,T_a),T_a,T_a),c_Tarski_Opotype_Oorder(V_cl,T_a,tc_Product__Type_Ounit),tc_prod(T_a,T_a)),true),true),true),true) = true ).
cnf(cls_Tarski_O_Ix1_M_Ay1_J_A_58_Aorder_A_Idual_Acl_J_A_61_61_A_Iy1_M_Ax1_J_A_58_Aorder_Acl_0,axiom,
ifeq(c_in(c_Pair(V_x,V_y,T_a,T_a),c_Tarski_Opotype_Oorder(c_Tarski_Odual(V_cl,T_a),T_a,tc_Product__Type_Ounit),tc_prod(T_a,T_a)),true,c_in(c_Pair(V_y,V_x,T_a,T_a),c_Tarski_Opotype_Oorder(V_cl,T_a,tc_Product__Type_Ounit),tc_prod(T_a,T_a)),true) = true ).
cnf(cls_Tarski_Odual_Acl_A_58_ACompleteLattice_0,axiom,
c_in(c_Tarski_Odual(v_cl,t_a),c_Tarski_OCompleteLattice,tc_Tarski_Opotype_Opotype__ext__type(t_a,tc_Product__Type_Ounit)) = true ).
cnf(cls_Tarski_Odual_Acl_A_58_APartialOrder_0,axiom,
c_in(c_Tarski_Odual(v_cl,t_a),c_Tarski_OPartialOrder,tc_Tarski_Opotype_Opotype__ext__type(t_a,tc_Product__Type_Ounit)) = true ).
cnf(cls_Tarski_Oglb__dual__lub_0,axiom,
c_Tarski_Oglb(V_S,V_cl,T_a) = c_Tarski_Olub(V_S,c_Tarski_Odual(V_cl,T_a),T_a) ).
cnf(cls_Tarski_Opset_A_Idual_Acl_J_A_61_61_Apset_Acl_0,axiom,
c_Tarski_Opotype_Opset(c_Tarski_Odual(V_cl,T_a),T_a,tc_Product__Type_Ounit) = c_Tarski_Opotype_Opset(V_cl,T_a,tc_Product__Type_Ounit) ).
cnf(cls_Tarski_Or_A_61_61_Aorder_Acl_0,axiom,
v_r = c_Tarski_Opotype_Oorder(v_cl,t_a,tc_Product__Type_Ounit) ).
%------------------------------------------------------------------------------