TPTP Problem File: LAT235-1.p
View Solutions
- Solve Problem
%------------------------------------------------------------------------------
% File : LAT235-1 : TPTP v9.0.0. Released v3.1.0.
% Domain : Lattice Theory
% Problem : Equation H34 is Huntington by implication
% Version : [McC05] (equality) axioms : Especial.
% English : Show that H34 is Huntington by deriving the Huntington implication
% X ^ Y = Y -> X' v Y' = Y' in uniquely complemented lattices.
% Refs : [McC05] McCune (2005), Email to Geoff Sutcliffe
% Source : [McC05]
% Names :
% Status : Unsatisfiable
% Rating : 0.33 v8.2.0, 0.44 v8.1.0, 0.47 v7.5.0, 0.35 v7.4.0, 0.41 v7.3.0, 0.31 v7.2.0, 0.33 v7.1.0, 0.27 v7.0.0, 0.31 v6.4.0, 0.29 v6.3.0, 0.30 v6.2.0, 0.50 v6.1.0, 0.55 v6.0.0, 0.43 v5.5.0, 0.50 v5.4.0, 0.56 v5.3.0, 0.70 v5.2.0, 0.50 v5.1.0, 0.56 v5.0.0, 0.50 v4.1.0, 0.56 v4.0.1, 0.62 v4.0.0, 0.43 v3.7.0, 0.14 v3.4.0, 0.17 v3.3.0, 0.33 v3.2.0, 0.22 v3.1.0
% Syntax : Number of clauses : 14 ( 13 unt; 0 nHn; 3 RR)
% Number of literals : 16 ( 16 equ; 3 neg)
% Maximal clause size : 3 ( 1 avg)
% Maximal term depth : 7 ( 2 avg)
% Number of predicates : 1 ( 0 usr; 0 prp; 2-2 aty)
% Number of functors : 7 ( 7 usr; 4 con; 0-2 aty)
% Number of variables : 24 ( 2 sgn)
% SPC : CNF_UNS_RFO_PEQ_NUE
% Comments :
%------------------------------------------------------------------------------
%----Include Lattice theory (equality) axioms
include('Axioms/LAT001-0.ax').
%----Include Lattice theory unique complementation (equality) axioms
include('Axioms/LAT001-4.ax').
%------------------------------------------------------------------------------
cnf(equation_H34,axiom,
meet(X,join(Y,meet(Z,U))) = meet(X,join(Y,meet(Z,join(Y,meet(U,join(Y,Z)))))) ).
cnf(prove_distributivity_hypothesis,hypothesis,
meet(b,a) = a ).
cnf(prove_distributivity,negated_conjecture,
join(complement(b),complement(a)) != complement(a) ).
%------------------------------------------------------------------------------