TPTP Problem File: LAT230-1.p
View Solutions
- Solve Problem
%------------------------------------------------------------------------------
% File : LAT230-1 : TPTP v9.0.0. Released v3.1.0.
% Domain : Lattice Theory
% Problem : Equation H18 is Huntington by implication
% Version : [McC05] (equality) axioms : Especial.
% English : Show that H18 is Huntington by deriving the Huntington implication
% X ^ Y = Y -> X' v Y' = Y' in uniquely complemented lattices.
% Refs : [McC05] McCune (2005), Email to Geoff Sutcliffe
% Source : [McC05]
% Names :
% Status : Unsatisfiable
% Rating : 0.67 v8.2.0, 0.69 v8.1.0, 0.74 v7.5.0, 0.82 v7.4.0, 0.76 v7.3.0, 0.77 v7.2.0, 0.83 v7.1.0, 0.82 v7.0.0, 0.69 v6.4.0, 0.71 v6.3.0, 0.80 v6.2.0, 0.90 v6.1.0, 0.91 v6.0.0, 0.86 v5.5.0, 0.88 v5.4.0, 0.78 v5.3.0, 0.80 v5.2.0, 0.88 v5.1.0, 0.89 v5.0.0, 0.80 v4.1.0, 0.78 v4.0.1, 0.75 v4.0.0, 0.86 v3.5.0, 0.71 v3.4.0, 0.83 v3.3.0, 1.00 v3.2.0, 0.89 v3.1.0
% Syntax : Number of clauses : 14 ( 13 unt; 0 nHn; 3 RR)
% Number of literals : 16 ( 16 equ; 3 neg)
% Maximal clause size : 3 ( 1 avg)
% Maximal term depth : 6 ( 2 avg)
% Number of predicates : 1 ( 0 usr; 0 prp; 2-2 aty)
% Number of functors : 7 ( 7 usr; 4 con; 0-2 aty)
% Number of variables : 23 ( 2 sgn)
% SPC : CNF_UNS_RFO_PEQ_NUE
% Comments :
%------------------------------------------------------------------------------
%----Include Lattice theory (equality) axioms
include('Axioms/LAT001-0.ax').
%----Include Lattice theory unique complementation (equality) axioms
include('Axioms/LAT001-4.ax').
%------------------------------------------------------------------------------
cnf(equation_H18,axiom,
join(meet(X,Y),meet(X,Z)) = meet(X,join(meet(X,Y),join(meet(X,Z),meet(Y,join(X,Z))))) ).
cnf(prove_distributivity_hypothesis,hypothesis,
meet(b,a) = a ).
cnf(prove_distributivity,negated_conjecture,
join(complement(b),complement(a)) != complement(a) ).
%------------------------------------------------------------------------------