TPTP Problem File: LAT198-1.p
View Solutions
- Solve Problem
%------------------------------------------------------------------------------
% File : LAT198-1 : TPTP v9.0.0. Released v3.1.0.
% Domain : Lattice Theory
% Problem : Equation H42 is Huntington by distributivity
% Version : [McC05] (equality) axioms : Especial.
% English : Show that H42 is Huntington by deriving distributivity in uniquely
% complemented lattices.
% Refs : [McC05] McCune (2005), Email to Geoff Sutcliffe
% Source : [McC05]
% Names :
% Status : Unsatisfiable
% Rating : 0.67 v9.0.0, 0.60 v8.2.0, 0.62 v8.1.0, 0.74 v7.5.0, 0.71 v7.4.0, 0.76 v7.3.0, 0.77 v7.2.0, 0.83 v7.1.0, 0.73 v7.0.0, 0.77 v6.4.0, 0.79 v6.3.0, 0.70 v6.1.0, 0.82 v6.0.0, 0.57 v5.5.0, 0.75 v5.4.0, 0.78 v5.3.0, 0.80 v5.2.0, 0.75 v5.1.0, 0.78 v5.0.0, 0.80 v4.1.0, 0.78 v4.0.1, 0.75 v4.0.0, 0.57 v3.7.0, 0.43 v3.4.0, 0.50 v3.3.0, 0.56 v3.1.0
% Syntax : Number of clauses : 13 ( 12 unt; 0 nHn; 2 RR)
% Number of literals : 15 ( 15 equ; 3 neg)
% Maximal clause size : 3 ( 1 avg)
% Maximal term depth : 7 ( 2 avg)
% Number of predicates : 1 ( 0 usr; 0 prp; 2-2 aty)
% Number of functors : 8 ( 8 usr; 5 con; 0-2 aty)
% Number of variables : 24 ( 2 sgn)
% SPC : CNF_UNS_RFO_PEQ_NUE
% Comments :
%------------------------------------------------------------------------------
%----Include Lattice theory (equality) axioms
include('Axioms/LAT001-0.ax').
%----Include Lattice theory unique complementation (equality) axioms
include('Axioms/LAT001-4.ax').
%------------------------------------------------------------------------------
cnf(equation_H42,axiom,
meet(X,join(Y,meet(Z,join(X,U)))) = meet(X,join(Y,meet(Z,join(Y,join(U,meet(X,Z)))))) ).
cnf(prove_distributivity,negated_conjecture,
meet(a,join(b,c)) != join(meet(a,b),meet(a,c)) ).
%------------------------------------------------------------------------------