TPTP Problem File: LAT136-1.p
View Solutions
- Solve Problem
%------------------------------------------------------------------------------
% File : LAT136-1 : TPTP v9.0.0. Released v3.1.0.
% Domain : Lattice Theory
% Problem : Huntington equation H39_dual is independent of H69
% Version : [McC05] (equality) axioms : Especial.
% English : Show that Huntington equation H69 does not imply Huntington
% equation H39_dual in lattice theory.
% Refs : [McC05] McCune (2005), Email to Geoff Sutcliffe
% Source : [McC05]
% Names :
% Status : Satisfiable
% Rating : 0.43 v9.0.0, 0.44 v8.2.0, 0.40 v8.1.0, 0.25 v7.5.0, 0.00 v6.2.0, 0.67 v6.1.0, 0.40 v6.0.0, 0.20 v5.5.0, 0.40 v5.4.0, 0.50 v5.3.0, 0.67 v5.2.0, 0.33 v4.1.0, 0.67 v4.0.1, 0.33 v3.2.0, 0.67 v3.1.0
% Syntax : Number of clauses : 10 ( 10 unt; 0 nHn; 1 RR)
% Number of literals : 10 ( 10 equ; 1 neg)
% Maximal clause size : 1 ( 1 avg)
% Maximal term depth : 6 ( 2 avg)
% Number of predicates : 1 ( 0 usr; 0 prp; 2-2 aty)
% Number of functors : 6 ( 6 usr; 4 con; 0-2 aty)
% Number of variables : 19 ( 2 sgn)
% SPC : CNF_SAT_RFO_PEQ_UEQ
% Comments :
%------------------------------------------------------------------------------
%----Include Lattice theory (equality) axioms
include('Axioms/LAT001-0.ax').
%------------------------------------------------------------------------------
cnf(equation_H69,axiom,
meet(X,join(Y,Z)) = join(meet(X,join(Z,meet(X,Y))),meet(X,join(Y,meet(X,Z)))) ).
cnf(prove_H39_dual,negated_conjecture,
join(a,meet(b,join(c,meet(a,d)))) != join(a,meet(b,join(c,meet(d,join(a,c))))) ).
%------------------------------------------------------------------------------