TPTP Problem File: LAT118-1.p
View Solutions
- Solve Problem
%------------------------------------------------------------------------------
% File : LAT118-1 : TPTP v9.0.0. Released v3.1.0.
% Domain : Lattice Theory
% Problem : Huntington equation H69 is independent of H79
% Version : [McC05] (equality) axioms : Especial.
% English : Show that Huntington equation H79 does not imply Huntington
% equation H69 in lattice theory.
% Refs : [McC05] McCune (2005), Email to Geoff Sutcliffe
% Source : [McC05]
% Names :
% Status : Satisfiable
% Rating : 0.71 v9.0.0, 0.78 v8.2.0, 0.60 v8.1.0, 0.75 v7.5.0, 0.50 v7.1.0, 0.67 v6.4.0, 0.75 v6.3.0, 0.67 v6.2.0, 0.83 v6.1.0, 0.80 v5.5.0, 1.00 v5.2.0, 0.67 v3.4.0, 1.00 v3.3.0, 0.67 v3.2.0, 1.00 v3.1.0
% Syntax : Number of clauses : 10 ( 10 unt; 0 nHn; 1 RR)
% Number of literals : 10 ( 10 equ; 1 neg)
% Maximal clause size : 1 ( 1 avg)
% Maximal term depth : 6 ( 2 avg)
% Number of predicates : 1 ( 0 usr; 0 prp; 2-2 aty)
% Number of functors : 5 ( 5 usr; 3 con; 0-2 aty)
% Number of variables : 20 ( 2 sgn)
% SPC : CNF_SAT_RFO_PEQ_UEQ
% Comments :
%------------------------------------------------------------------------------
%----Include Lattice theory (equality) axioms
include('Axioms/LAT001-0.ax').
%------------------------------------------------------------------------------
cnf(equation_H79,axiom,
meet(X,join(Y,meet(Z,join(X,U)))) = meet(X,join(meet(X,join(Y,meet(X,Z))),meet(Z,U))) ).
cnf(prove_H69,negated_conjecture,
meet(a,join(b,c)) != join(meet(a,join(c,meet(a,b))),meet(a,join(b,meet(a,c)))) ).
%------------------------------------------------------------------------------