TPTP Problem File: LAT073-1.p
View Solutions
- Solve Problem
%--------------------------------------------------------------------------
% File : LAT073-1 : TPTP v9.0.0. Released v2.6.0.
% Domain : Lattice Theory (Ortholattices)
% Problem : Given single axiom MOL-23C, prove modularity
% Version : [MRV03] (equality) axioms.
% English : Given a single axiom candidate MOL-23C for modular ortholattices
% (MOL) in terms of the Sheffer Stroke, prove a Sheffer stroke form
% of modularity.
% Refs : [MRV03] McCune et al. (2003), Sheffer Stroke Bases for Ortholatt
% Source : [MRV03]
% Names : MOL-23C-modularity [MRV03]
% Status : Open
% Rating : 1.00 v2.6.0
% Syntax : Number of clauses : 2 ( 2 unt; 0 nHn; 1 RR)
% Number of literals : 2 ( 2 equ; 1 neg)
% Maximal clause size : 1 ( 1 avg)
% Maximal term depth : 7 ( 2 avg)
% Number of predicates : 1 ( 0 usr; 0 prp; 2-2 aty)
% Number of functors : 4 ( 4 usr; 3 con; 0-2 aty)
% Number of variables : 4 ( 1 sgn)
% SPC : CNF_OPN_RFO_PEQ_UEQ
% Comments :
%--------------------------------------------------------------------------
%----Single axiom MOL-23C
cnf(mol_23C,axiom,
f(f(f(B,f(A,B)),B),f(A,f(C,f(f(A,B),f(f(C,C),D))))) = A ).
%----Denial of Sheffer stroke modularity
cnf(modularity,negated_conjecture,
f(a,f(b,f(a,f(c,c)))) != f(a,f(c,f(a,f(b,b)))) ).
%--------------------------------------------------------------------------