TPTP Problem File: LAT064-1.p
View Solutions
- Solve Problem
%--------------------------------------------------------------------------
% File : LAT064-1 : TPTP v9.0.0. Released v2.5.0.
% Domain : Lattice Theory
% Problem : Weak property 94-6 to make a uniquely complemented lattice Boolean
% Version : [EF+02] axioms.
% English :
% Refs : [EF+02] Ernst et al. (2002), More First-order Test Problems in
% Source : [EF+02]
% Names : lattice-uc [EF+02]
% Status : Unsatisfiable
% Rating : 0.87 v8.2.0, 0.81 v8.1.0, 0.84 v7.5.0, 0.88 v7.4.0, 1.00 v7.3.0, 0.92 v7.2.0, 1.00 v2.5.0
% Syntax : Number of clauses : 13 ( 12 unt; 0 nHn; 2 RR)
% Number of literals : 15 ( 15 equ; 3 neg)
% Maximal clause size : 3 ( 1 avg)
% Maximal term depth : 6 ( 2 avg)
% Number of predicates : 1 ( 0 usr; 0 prp; 2-2 aty)
% Number of functors : 8 ( 8 usr; 5 con; 0-2 aty)
% Number of variables : 23 ( 2 sgn)
% SPC : CNF_UNS_RFO_PEQ_NUE
% Comments :
%--------------------------------------------------------------------------
%----Include lattice axioms
include('Axioms/LAT001-0.ax').
%--------------------------------------------------------------------------
%----Complementation
cnf(top,axiom,
join(A,complement(A)) = n1 ).
cnf(bottom,axiom,
meet(A,complement(A)) = n0 ).
%----Complements are unique
cnf(complements_are_unique,axiom,
( join(A,B) != n1
| meet(A,B) != n0
| complement(A) = B ) ).
%----94-6
cnf(c94_6,axiom,
meet(A,join(B,meet(C,join(A,meet(B,C))))) = meet(A,join(B,meet(A,C))) ).
%----Denial of distributivity
cnf(prove_distributivity,negated_conjecture,
meet(a,join(b,c)) != join(meet(a,b),meet(a,c)) ).
%--------------------------------------------------------------------------