TPTP Problem File: LAT052-1.p
View Solutions
- Solve Problem
%--------------------------------------------------------------------------
% File : LAT052-1 : TPTP v9.0.0. Released v2.5.0.
% Domain : Lattice Theory
% Problem : Modular lattice is not modular ortholattice
% Version : [McC88] (equality) axioms.
% English :
% Refs : [McC88] McCune (1988), Challenge Equality Problems in Lattice
% : [RW01] Rose & Wilkinson (2001), Application of Model Search
% Source : [RW01]
% Names : mace-g1.in [RW01]
% Status : Satisfiable
% Rating : 0.57 v9.0.0, 0.44 v8.2.0, 0.20 v8.1.0, 0.25 v7.5.0, 0.00 v6.2.0, 0.33 v6.1.0, 0.40 v6.0.0, 0.20 v5.5.0, 0.40 v5.4.0, 0.50 v5.3.0, 0.67 v5.2.0, 0.33 v4.1.0, 0.67 v4.0.1, 0.33 v3.2.0, 0.67 v3.1.0, 0.33 v2.6.0, 0.67 v2.5.0
% Syntax : Number of clauses : 13 ( 13 unt; 0 nHn; 1 RR)
% Number of literals : 13 ( 13 equ; 1 neg)
% Maximal clause size : 1 ( 1 avg)
% Maximal term depth : 4 ( 2 avg)
% Number of predicates : 1 ( 0 usr; 0 prp; 2-2 aty)
% Number of functors : 7 ( 7 usr; 4 con; 0-2 aty)
% Number of variables : 22 ( 2 sgn)
% SPC : CNF_SAT_RFO_PEQ_UEQ
% Comments : First part of the problem. The second part, mace-g2.in, requires
% MACE specific input.
%--------------------------------------------------------------------------
%----Include lattice axioms
include('Axioms/LAT001-0.ax').
%--------------------------------------------------------------------------
%----Invertability (5)
cnf(invertability1,axiom,
join(complement(X),X) = n1 ).
cnf(invertability2,axiom,
meet(complement(X),X) = n0 ).
cnf(invertability3,axiom,
complement(complement(X)) = X ).
%----Modular law (7)
cnf(modular_law,axiom,
join(X,meet(Y,join(X,Z))) = meet(join(X,Y),join(X,Z)) ).
%----Denial of compatibility (6)
cnf(prove_compatibility_law,negated_conjecture,
complement(join(a,b)) != meet(complement(a),complement(b)) ).
%--------------------------------------------------------------------------