TPTP Problem File: LAT045-1.p
View Solutions
- Solve Problem
%--------------------------------------------------------------------------
% File : LAT045-1 : TPTP v9.0.0. Released v2.5.0.
% Domain : Lattice Theory
% Problem : Lattice orthomodular law from modular lattice
% Version : [McC88] (equality) axioms.
% English :
% Refs : [McC88] McCune (1988), Challenge Equality Problems in Lattice
% : [RW01] Rose & Wilkinson (2001), Application of Model Search
% Source : [RW01]
% Names : eqp-f.in [RW01]
% Status : Unsatisfiable
% Rating : 0.05 v8.2.0, 0.04 v8.1.0, 0.05 v7.5.0, 0.04 v7.4.0, 0.13 v7.3.0, 0.05 v7.1.0, 0.06 v7.0.0, 0.11 v6.3.0, 0.12 v6.2.0, 0.14 v6.1.0, 0.12 v6.0.0, 0.24 v5.5.0, 0.21 v5.4.0, 0.07 v5.3.0, 0.08 v5.2.0, 0.14 v5.1.0, 0.07 v4.1.0, 0.09 v4.0.1, 0.07 v4.0.0, 0.08 v3.7.0, 0.00 v3.3.0, 0.07 v3.1.0, 0.11 v2.7.0, 0.00 v2.5.0
% Syntax : Number of clauses : 15 ( 15 unt; 0 nHn; 1 RR)
% Number of literals : 15 ( 15 equ; 1 neg)
% Maximal clause size : 1 ( 1 avg)
% Maximal term depth : 4 ( 2 avg)
% Number of predicates : 1 ( 0 usr; 0 prp; 2-2 aty)
% Number of functors : 7 ( 7 usr; 4 con; 0-2 aty)
% Number of variables : 26 ( 2 sgn)
% SPC : CNF_UNS_RFO_PEQ_UEQ
% Comments :
%--------------------------------------------------------------------------
%----Include lattice axioms
include('Axioms/LAT001-0.ax').
%--------------------------------------------------------------------------
%----Compatibility (6)
cnf(compatibility1,axiom,
complement(join(X,Y)) = meet(complement(X),complement(Y)) ).
cnf(compatibility2,axiom,
complement(meet(X,Y)) = join(complement(X),complement(Y)) ).
%----Invertability (5)
cnf(invertability1,axiom,
join(complement(X),X) = n1 ).
cnf(invertability2,axiom,
meet(complement(X),X) = n0 ).
cnf(invertability3,axiom,
complement(complement(X)) = X ).
%----Modular law (7)
cnf(modular_law,axiom,
join(X,meet(Y,join(X,Z))) = meet(join(X,Y),join(X,Z)) ).
%----Denial of orthomodular law (8)
cnf(prove_orthomodular_law,negated_conjecture,
join(a,meet(complement(a),join(a,b))) != join(a,b) ).
%--------------------------------------------------------------------------