TPTP Problem File: LAT042-1.p
View Solutions
- Solve Problem
%--------------------------------------------------------------------------
% File : LAT042-1 : TPTP v9.0.0. Released v2.5.0.
% Domain : Lattice Theory
% Problem : Lattice modularity from Boolean algebra
% Version : [McC88] (equality) axioms.
% English :
% Refs : [McC88] McCune (1988), Challenge Equality Problems in Lattice
% : [RW01] Rose & Wilkinson (2001), Application of Model Search
% Source : [RW01]
% Names : eqp-a1.in [RW01]
% Status : Unsatisfiable
% Rating : 0.00 v8.1.0, 0.05 v7.5.0, 0.00 v7.4.0, 0.09 v7.3.0, 0.00 v6.4.0, 0.05 v6.3.0, 0.06 v6.2.0, 0.07 v6.1.0, 0.06 v6.0.0, 0.14 v5.5.0, 0.05 v5.4.0, 0.07 v5.3.0, 0.08 v5.2.0, 0.07 v5.0.0, 0.00 v3.4.0, 0.12 v3.3.0, 0.07 v3.2.0, 0.00 v2.5.0
% Syntax : Number of clauses : 13 ( 13 unt; 0 nHn; 1 RR)
% Number of literals : 13 ( 13 equ; 1 neg)
% Maximal clause size : 1 ( 1 avg)
% Maximal term depth : 4 ( 2 avg)
% Number of predicates : 1 ( 0 usr; 0 prp; 2-2 aty)
% Number of functors : 8 ( 8 usr; 5 con; 0-2 aty)
% Number of variables : 22 ( 2 sgn)
% SPC : CNF_UNS_RFO_PEQ_UEQ
% Comments :
%--------------------------------------------------------------------------
%----Include lattice axioms
include('Axioms/LAT001-0.ax').
%--------------------------------------------------------------------------
% Distributivity (4)
cnf(distributivity,axiom,
meet(X,join(Y,Z)) = join(meet(X,Y),meet(X,Z)) ).
% Invertability (5)
cnf(invertability1,axiom,
join(complement(X),X) = n1 ).
cnf(invertability2,axiom,
meet(complement(X),X) = n0 ).
cnf(invertability3,axiom,
complement(complement(X)) = X ).
%----Preceding gives us Boolean Algebra
%----Denial of modular law:
cnf(prove_modular_law,negated_conjecture,
join(a,meet(b,join(a,c))) != meet(join(a,b),join(a,c)) ).
%--------------------------------------------------------------------------