TPTP Problem File: LAT039-1.p
View Solutions
- Solve Problem
%--------------------------------------------------------------------------
% File : LAT039-1 : TPTP v9.0.0. Released v2.4.0.
% Domain : Lattice Theory
% Problem : Every distributive lattice is modular
% Version : [McC88] (equality) axioms.
% Theorem formulation : Modularity is expressed by:
% x <= y -> x v (y & z) = y & (x v z)
% English :
% Refs : [DeN00] DeNivelle (2000), Email to G. Sutcliffe
% [McC88] McCune (1988), Challenge Equality Problems in Lattice
% Source : [DeN00]
% Names : lattice-mod-2 [DeN00]
% Status : Unsatisfiable
% Rating : 0.05 v8.2.0, 0.04 v8.1.0, 0.05 v7.5.0, 0.04 v7.4.0, 0.09 v7.3.0, 0.05 v7.1.0, 0.06 v7.0.0, 0.05 v6.3.0, 0.06 v6.2.0, 0.07 v6.1.0, 0.06 v6.0.0, 0.10 v5.5.0, 0.05 v5.4.0, 0.00 v2.4.0
% Syntax : Number of clauses : 12 ( 12 unt; 0 nHn; 2 RR)
% Number of literals : 12 ( 12 equ; 1 neg)
% Maximal clause size : 1 ( 1 avg)
% Maximal term depth : 3 ( 2 avg)
% Number of predicates : 1 ( 0 usr; 0 prp; 2-2 aty)
% Number of functors : 5 ( 5 usr; 3 con; 0-2 aty)
% Number of variables : 22 ( 2 sgn)
% SPC : CNF_UNS_RFO_PEQ_UEQ
% Comments :
%--------------------------------------------------------------------------
%----Include lattice theory axioms
include('Axioms/LAT001-0.ax').
%--------------------------------------------------------------------------
cnf(dist_join,hypothesis,
join(X,meet(Y,Z)) = meet(join(X,Y),join(X,Z)) ).
cnf(dist_meet,hypothesis,
meet(X,join(Y,Z)) = join(meet(X,Y),meet(X,Z)) ).
cnf(lhs,hypothesis,
join(xx,yy) = yy ).
cnf(rhs,negated_conjecture,
join(xx,meet(yy,zz)) != meet(yy,join(xx,zz)) ).
%--------------------------------------------------------------------------