TPTP Problem File: LAT037-1.p
View Solutions
- Solve Problem
%--------------------------------------------------------------------------
% File : LAT037-1 : TPTP v9.0.0. Released v2.4.0.
% Domain : Lattice Theory
% Problem : Uniqueness of complement
% Version : [McC88] (equality) axioms.
% English : Distributive lattice complements are unique whenever they exist.
% Refs : [DeN00] DeNivelle (2000), Email to G. Sutcliffe
% [McC88] McCune (1988), Challenge Equality Problems in Lattice
% Source : [DeN00]
% Names : lattice-complement [DeN00]
% Status : Unsatisfiable
% Rating : 0.07 v9.0.0, 0.00 v6.4.0, 0.07 v6.3.0, 0.10 v6.2.0, 0.20 v6.1.0, 0.09 v6.0.0, 0.00 v5.5.0, 0.12 v5.4.0, 0.00 v5.3.0, 0.10 v5.2.0, 0.00 v2.4.0
% Syntax : Number of clauses : 20 ( 19 unt; 0 nHn; 5 RR)
% Number of literals : 21 ( 21 equ; 2 neg)
% Maximal clause size : 2 ( 1 avg)
% Maximal term depth : 3 ( 1 avg)
% Number of predicates : 1 ( 0 usr; 0 prp; 2-2 aty)
% Number of functors : 7 ( 7 usr; 5 con; 0-2 aty)
% Number of variables : 29 ( 4 sgn)
% SPC : CNF_UNS_RFO_PEQ_NUE
% Comments :
%--------------------------------------------------------------------------
%----Include lattice theory axioms
include('Axioms/LAT001-0.ax').
%--------------------------------------------------------------------------
cnf(dist_join,hypothesis,
join(X,meet(Y,Z)) = meet(join(X,Y),join(X,Z)) ).
cnf(dist_meet,hypothesis,
meet(X,join(Y,Z)) = join(meet(X,Y),meet(X,Z)) ).
cnf(x_meet_0,axiom,
meet(X,n0) = n0 ).
cnf(x_join_0,axiom,
join(X,n0) = X ).
cnf(x_meet_1,axiom,
meet(X,n1) = X ).
cnf(x_join_1,axiom,
join(X,n1) = n1 ).
cnf(modular,axiom,
( meet(X,Z) != X
| meet(Z,join(X,Y)) = join(X,meet(Y,Z)) ) ).
cnf(lhs1,axiom,
join(xx,yy) = n1 ).
cnf(lhs2,axiom,
join(xx,zz) = n1 ).
cnf(lhs3,axiom,
meet(xx,yy) = n0 ).
cnf(lhs4,axiom,
meet(xx,zz) = n0 ).
cnf(rhs,negated_conjecture,
yy != zz ).
%--------------------------------------------------------------------------