TPTP Problem File: LAT036-1.p
View Solutions
- Solve Problem
%--------------------------------------------------------------------------
% File : LAT036-1 : TPTP v9.0.0. Released v2.4.0.
% Domain : Lattice Theory
% Problem : Property of a distributive lattive with an antimorphism
% Version : [McC88] (equality) axioms.
% English : In every distributive lattice with 0,1 and an antimorphism k:
% if k^2(a) \leq a v k(a) and
% k^3(b) \leq a v k(a) and
% k^2(a) \leq k(a) v k(b) v k(c) and
% k^3(b) \leq k(a) v k(b) v k(c)
% then k^2(a v k(b)) \leq (a & k(b & c)) v k(a)
% Refs : [DeN00] DeNivelle (2000), Email to G. Sutcliffe
% [BV94] Blyth & Varlet I.C. (1994), Ockham Algebras
% [McC88] McCune (1988), Challenge Equality Problems in Lattice
% Source : [DeN00]
% Names : lattice-antimorphism [DeN00]
% Example 5.1 [BV94]
% Status : Unsatisfiable
% Rating : 0.53 v8.2.0, 0.56 v8.1.0, 0.68 v7.5.0, 0.65 v7.4.0, 0.59 v7.3.0, 0.62 v7.2.0, 0.58 v7.1.0, 0.55 v7.0.0, 0.69 v6.4.0, 0.71 v6.3.0, 0.60 v6.2.0, 0.70 v6.1.0, 0.73 v6.0.0, 0.86 v5.5.0, 0.88 v5.4.0, 0.89 v5.3.0, 0.80 v5.2.0, 0.88 v5.1.0, 0.78 v5.0.0, 0.90 v4.1.0, 0.89 v4.0.1, 0.88 v4.0.0, 0.71 v3.4.0, 0.83 v3.3.0, 0.78 v3.2.0, 0.89 v3.1.0, 0.80 v2.7.0, 0.75 v2.6.0, 0.83 v2.5.0, 1.00 v2.4.0
% Syntax : Number of clauses : 24 ( 23 unt; 0 nHn; 7 RR)
% Number of literals : 25 ( 25 equ; 2 neg)
% Maximal clause size : 2 ( 1 avg)
% Maximal term depth : 6 ( 2 avg)
% Number of predicates : 1 ( 0 usr; 0 prp; 2-2 aty)
% Number of functors : 8 ( 8 usr; 5 con; 0-2 aty)
% Number of variables : 33 ( 4 sgn)
% SPC : CNF_UNS_RFO_PEQ_NUE
% Comments :
%--------------------------------------------------------------------------
%----Include lattice theory axioms
include('Axioms/LAT001-0.ax').
%--------------------------------------------------------------------------
cnf(dist_join,hypothesis,
join(X,meet(Y,Z)) = meet(join(X,Y),join(X,Z)) ).
cnf(dist_meet,hypothesis,
meet(X,join(Y,Z)) = join(meet(X,Y),meet(X,Z)) ).
cnf(x_meet_0,axiom,
meet(X,n0) = n0 ).
cnf(x_join_0,axiom,
join(X,n0) = X ).
cnf(x_meet_1,axiom,
meet(X,n1) = X ).
cnf(x_join_1,axiom,
join(X,n1) = n1 ).
cnf(modular,axiom,
( meet(X,Z) != X
| meet(Z,join(X,Y)) = join(X,meet(Y,Z)) ) ).
cnf(k_on_join,axiom,
k(join(U,V)) = meet(k(U),k(V)) ).
cnf(k_on_meet,axiom,
k(meet(U,V)) = join(k(U),k(V)) ).
cnf(k_on_bottom,axiom,
k(n0) = n1 ).
cnf(k_on_top,axiom,
k(n1) = n0 ).
cnf(lhs1,hypothesis,
join(k(k(aa)),join(aa,k(aa))) = join(aa,k(aa)) ).
cnf(lhs2,hypothesis,
join(k(k(k(bb))),join(aa,k(aa))) = join(aa,k(aa)) ).
cnf(lhs3,hypothesis,
join(k(k(aa)),join(k(aa),join(k(bb),k(cc)))) = join(k(aa),join(k(bb),k(cc))) ).
cnf(lhs4,hypothesis,
join(k(k(k(bb))),join(k(aa),join(k(bb),k(cc)))) = join(k(aa),join(k(bb),k(cc))) ).
cnf(rhs,negated_conjecture,
join(k(k(join(aa,k(bb)))),join(meet(aa,k(meet(bb,cc))),k(aa))) != join(meet(aa,k(meet(bb,cc))),k(aa)) ).
%--------------------------------------------------------------------------