TPTP Problem File: LAT035-1.p
View Solutions
- Solve Problem
%--------------------------------------------------------------------------
% File : LAT035-1 : TPTP v9.0.0. Released v2.4.0.
% Domain : Lattice Theory
% Problem : Composition to form a join hemimorphism
% Version : [McC88] (equality) axioms.
% English : In a lattice with 0,1, the composition of a unary join
% antihemimorphism and a lattice antimorphism is a join
% hemimorphism.
% Refs : [DeN00] DeNivelle (2000), Email to G. Sutcliffe
% [McC88] McCune (1988), Challenge Equality Problems in Lattice
% Source : [DeN00]
% Names : lattice-antihemi [DeN00]
% Status : Unsatisfiable
% Rating : 0.00 v6.2.0, 0.10 v6.1.0, 0.09 v6.0.0, 0.00 v5.5.0, 0.12 v5.4.0, 0.00 v5.3.0, 0.20 v5.2.0, 0.00 v5.1.0, 0.11 v5.0.0, 0.10 v4.1.0, 0.11 v4.0.1, 0.12 v4.0.0, 0.14 v3.7.0, 0.00 v2.4.0
% Syntax : Number of clauses : 20 ( 18 unt; 0 nHn; 4 RR)
% Number of literals : 22 ( 22 equ; 3 neg)
% Maximal clause size : 2 ( 1 avg)
% Maximal term depth : 4 ( 2 avg)
% Number of predicates : 1 ( 0 usr; 0 prp; 2-2 aty)
% Number of functors : 8 ( 8 usr; 4 con; 0-2 aty)
% Number of variables : 29 ( 4 sgn)
% SPC : CNF_UNS_RFO_PEQ_NUE
% Comments :
%--------------------------------------------------------------------------
%----Include lattice theory axioms
include('Axioms/LAT001-0.ax').
%--------------------------------------------------------------------------
cnf(x_meet_0,axiom,
meet(X,n0) = n0 ).
cnf(x_join_0,axiom,
join(X,n0) = X ).
cnf(x_meet_1,axiom,
meet(X,n1) = X ).
cnf(x_join_1,axiom,
join(X,n1) = n1 ).
cnf(modular,axiom,
( meet(X,Z) != X
| meet(Z,join(X,Y)) = join(X,meet(Y,Z)) ) ).
cnf(k_on_join,axiom,
k(join(U,V)) = meet(k(U),k(V)) ).
cnf(k_on_meet,axiom,
k(meet(U,V)) = join(k(U),k(V)) ).
cnf(k_on_bottom,axiom,
k(n0) = n1 ).
cnf(k_on_top,axiom,
k(n1) = n0 ).
cnf(f_on_meet,axiom,
f(meet(U,V)) = join(f(U),f(V)) ).
cnf(f_on_top,axiom,
f(n1) = n0 ).
cnf(comp_join_hemimorphism,negated_conjecture,
( f(k(join(aa,bb))) != join(f(k(aa)),f(k(bb)))
| f(k(n0)) != n0 ) ).
%--------------------------------------------------------------------------