TPTP Problem File: LAT030-1.p
View Solutions
- Solve Problem
%--------------------------------------------------------------------------
% File : LAT030-1 : TPTP v9.0.0. Released v2.2.0.
% Domain : Lattice Theory (Weakly Associative Lattices)
% Problem : Single axiom for weakly associative lattices (WAL)
% Version : [MP96] (equality) axioms : Especial.
% English : This starts with a single axiom for WAL and derives a
% standard basis for WAL.
% Refs : [McC98] McCune (1998), Email to G. Sutcliffe
% : [MP96] McCune & Padmanabhan (1996), Automated Deduction in Eq
% Source : [McC98]
% Names : WAL-4 [MP96]
% Status : Unsatisfiable
% Rating : 0.40 v9.0.0, 0.33 v8.2.0, 0.44 v8.1.0, 0.42 v7.5.0, 0.41 v7.4.0, 0.47 v7.3.0, 0.38 v7.2.0, 0.42 v7.1.0, 0.36 v7.0.0, 0.38 v6.4.0, 0.50 v6.3.0, 0.40 v6.2.0, 0.50 v6.1.0, 0.64 v6.0.0, 0.43 v5.5.0, 0.50 v5.4.0, 0.67 v5.3.0, 0.80 v5.2.0, 0.62 v5.1.0, 0.67 v5.0.0, 0.70 v4.1.0, 0.67 v4.0.1, 0.75 v4.0.0, 0.71 v3.7.0, 0.43 v3.4.0, 0.17 v3.3.0, 0.33 v3.1.0, 0.20 v2.7.0, 0.50 v2.6.0, 0.33 v2.5.0, 0.50 v2.4.0, 0.50 v2.3.0, 0.67 v2.2.1
% Syntax : Number of clauses : 2 ( 1 unt; 0 nHn; 1 RR)
% Number of literals : 7 ( 7 equ; 6 neg)
% Maximal clause size : 6 ( 3 avg)
% Maximal term depth : 11 ( 2 avg)
% Number of predicates : 1 ( 0 usr; 0 prp; 2-2 aty)
% Number of functors : 5 ( 5 usr; 3 con; 0-2 aty)
% Number of variables : 6 ( 1 sgn)
% SPC : CNF_UNS_RFO_PEQ_NUE
% Comments :
%--------------------------------------------------------------------------
%----A single axiom for weakly associative lattices.
cnf(single_axiom,axiom,
join(meet(join(meet(X,Y),meet(Y,join(X,Y))),Z),meet(join(meet(X,join(join(meet(Y,X1),meet(X2,Y)),Y)),meet(join(meet(Y,meet(meet(join(Y,X1),join(X2,Y)),Y)),meet(U,join(Y,meet(meet(join(Y,X1),join(X2,Y)),Y)))),join(X,join(join(meet(Y,X1),meet(X2,Y)),Y)))),join(join(meet(X,Y),meet(Y,join(X,Y))),Z))) = Y ).
%----Denial of the WAL axioms:
cnf(prove_wal_axioms,negated_conjecture,
( meet(a,a) != a
| meet(b,a) != meet(a,b)
| join(a,a) != a
| join(b,a) != join(a,b)
| meet(meet(join(a,b),join(c,b)),b) != b
| join(join(meet(a,b),meet(c,b)),b) != b ) ).
%--------------------------------------------------------------------------