TPTP Problem File: LAT024-1.p
View Solutions
- Solve Problem
%--------------------------------------------------------------------------
% File : LAT024-1 : TPTP v9.0.0. Released v2.2.0.
% Domain : Lattice Theory (Quasilattices)
% Problem : Meet (dually join) is not necessarily unique for quasilattices.
% Version : [MP96] (equality) axioms.
% English : Let's say we have a quasilattice with two meet operations, say
% meet1 and meet2. In other words, {join,meet1} is a lattice,
% and {join,meet2} is a lattice. Then, we can show that the
% two meet operations not necessarily the same.
% Refs : [McC98] McCune (1998), Email to G. Sutcliffe
% : [MP96] McCune & Padmanabhan (1996), Automated Deduction in Eq
% Source : [McC98]
% Names : QLT-7 [MP96]
% Status : Satisfiable
% Rating : 0.43 v9.0.0, 0.22 v8.2.0, 0.00 v8.1.0, 0.25 v7.5.0, 0.00 v6.1.0, 0.20 v6.0.0, 0.00 v5.5.0, 0.20 v5.4.0, 0.50 v5.3.0, 0.67 v5.2.0, 0.33 v3.2.0, 0.67 v3.1.0, 0.33 v2.4.0, 0.67 v2.3.0, 1.00 v2.2.1
% Syntax : Number of clauses : 14 ( 14 unt; 0 nHn; 1 RR)
% Number of literals : 14 ( 14 equ; 1 neg)
% Maximal clause size : 1 ( 1 avg)
% Maximal term depth : 4 ( 2 avg)
% Number of predicates : 1 ( 0 usr; 0 prp; 2-2 aty)
% Number of functors : 5 ( 5 usr; 2 con; 0-2 aty)
% Number of variables : 30 ( 0 sgn)
% SPC : CNF_SAT_RFO_PEQ_UEQ
% Comments : There is a 2-element model.
% : For lattices meet (dually join) is unique.
%--------------------------------------------------------------------------
%----Include Quasilattice theory (equality) axioms
include('Axioms/LAT004-0.ax').
%--------------------------------------------------------------------------
%----{join,meet2} is a quasilattice:
cnf(idempotence_of_meet2,axiom,
meet2(X,X) = X ).
cnf(commutativity_of_meet2,axiom,
meet2(X,Y) = meet2(Y,X) ).
cnf(associativity_of_meet2,axiom,
meet2(meet2(X,Y),Z) = meet2(X,meet2(Y,Z)) ).
cnf(quasi_lattice1_2,axiom,
join(meet2(X,join(Y,Z)),meet2(X,Y)) = meet2(X,join(Y,Z)) ).
cnf(quasi_lattice2_2,axiom,
meet2(join(X,meet2(Y,Z)),join(X,Y)) = join(X,meet2(Y,Z)) ).
%----Denial that meet1 and meet2 are the same:
cnf(prove_meets_equal,negated_conjecture,
meet(a,b) != meet2(a,b) ).
%--------------------------------------------------------------------------