TPTP Problem File: LAT015-1.p
View Solutions
- Solve Problem
%--------------------------------------------------------------------------
% File : LAT015-1 : TPTP v9.0.0. Released v2.2.0.
% Domain : Lattice Theory
% Problem : Single axiom for lattice theory
% Version : [MP96] (equality) axioms.
% English : This starts with a single axiom for lattice theory and derives a
% standard basis for lattice theory.
% Refs : [McC98] McCune (1998), Email to G. Sutcliffe
% : [MP96] McCune & Padmanabhan (1996), Automated Deduction in Eq
% Source : [McC98]
% Names : LT-12 [MP96]
% Status : Unsatisfiable
% Rating : 0.53 v9.0.0, 0.47 v8.2.0, 0.50 v8.1.0, 0.63 v7.5.0, 0.59 v7.4.0, 0.65 v7.3.0, 0.62 v7.2.0, 0.67 v7.1.0, 0.55 v7.0.0, 0.62 v6.4.0, 0.64 v6.3.0, 0.50 v6.2.0, 0.60 v6.1.0, 0.73 v6.0.0, 0.57 v5.5.0, 0.62 v5.4.0, 0.78 v5.3.0, 0.80 v5.2.0, 0.75 v5.1.0, 0.78 v5.0.0, 0.80 v4.1.0, 0.78 v4.0.1, 0.88 v4.0.0, 0.71 v3.4.0, 0.50 v3.3.0, 0.56 v3.1.0, 0.40 v2.7.0, 0.88 v2.6.0, 0.50 v2.5.0, 0.75 v2.4.0, 0.50 v2.3.0, 0.67 v2.2.1
% Syntax : Number of clauses : 2 ( 1 unt; 0 nHn; 1 RR)
% Number of literals : 9 ( 9 equ; 8 neg)
% Maximal clause size : 8 ( 4 avg)
% Maximal term depth : 12 ( 2 avg)
% Number of predicates : 1 ( 0 usr; 0 prp; 2-2 aty)
% Number of functors : 5 ( 5 usr; 3 con; 0-2 aty)
% Number of variables : 7 ( 1 sgn)
% SPC : CNF_UNS_RFO_PEQ_NUE
% Comments :
%--------------------------------------------------------------------------
%----A single axiom for lattice theory
cnf(single_axiom,axiom,
join(meet(join(meet(X,Y),meet(Y,join(X,Y))),Z),meet(join(meet(X,join(join(meet(X1,Y),meet(Y,X2)),Y)),meet(join(meet(Y,meet(meet(join(X1,join(Y,X2)),join(X3,Y)),Y)),meet(U,join(Y,meet(meet(join(X1,join(Y,X2)),join(X3,Y)),Y)))),join(X,join(join(meet(X1,Y),meet(Y,X2)),Y)))),join(join(meet(X,Y),meet(Y,join(X,Y))),Z))) = Y ).
%----Denial of the LT axioms:
cnf(prove_normal_axioms,negated_conjecture,
( meet(a,a) != a
| meet(a,b) != meet(b,a)
| meet(meet(a,b),c) != meet(a,meet(b,c))
| join(a,a) != a
| join(a,b) != join(b,a)
| join(join(a,b),c) != join(a,join(b,c))
| meet(a,join(a,b)) != a
| join(a,meet(a,b)) != a ) ).
%--------------------------------------------------------------------------