TPTP Problem File: LAT012-1.p
View Solutions
- Solve Problem
%--------------------------------------------------------------------------
% File : LAT012-1 : TPTP v9.0.0. Released v2.2.0.
% Domain : Lattice Theory
% Problem : McKenzie's 4-basis for lattice theory, part 1 (of 3)
% Version : [MP96] (equality) axioms.
% English : This is part of a proof that McKenzie's 4-basis axiomatizes
% lattice theory. We prove half of the standard basis.
% The other half follows by duality. In this part we prove
% commutativity of meet.
% Refs : [McC98] McCune (1998), Email to G. Sutcliffe
% : [MP96] McCune & Padmanabhan (1996), Automated Deduction in Eq
% Source : [McC98]
% Names : LT-9-a [MP96]
% Status : Unsatisfiable
% Rating : 0.05 v8.2.0, 0.04 v8.1.0, 0.05 v7.5.0, 0.04 v7.4.0, 0.13 v7.3.0, 0.05 v7.1.0, 0.00 v7.0.0, 0.05 v6.3.0, 0.06 v6.2.0, 0.07 v6.1.0, 0.12 v6.0.0, 0.29 v5.5.0, 0.32 v5.4.0, 0.13 v5.3.0, 0.00 v5.2.0, 0.07 v5.1.0, 0.13 v5.0.0, 0.07 v4.1.0, 0.09 v4.0.1, 0.07 v4.0.0, 0.08 v3.7.0, 0.00 v3.1.0, 0.11 v2.7.0, 0.00 v2.2.1
% Syntax : Number of clauses : 5 ( 5 unt; 0 nHn; 1 RR)
% Number of literals : 5 ( 5 equ; 1 neg)
% Maximal clause size : 1 ( 1 avg)
% Maximal term depth : 4 ( 2 avg)
% Number of predicates : 1 ( 0 usr; 0 prp; 2-2 aty)
% Number of functors : 4 ( 4 usr; 2 con; 0-2 aty)
% Number of variables : 12 ( 8 sgn)
% SPC : CNF_UNS_RFO_PEQ_UEQ
% Comments :
%--------------------------------------------------------------------------
%----McKenzie's self-dual (independent) absorptive 4-basis for lattice theory.
cnf(mckenzie1,axiom,
join(X,meet(Y,meet(X,Z))) = X ).
cnf(mckenzie2,axiom,
meet(X,join(Y,join(X,Z))) = X ).
cnf(mckenzie3,axiom,
join(join(meet(X,Y),meet(Y,Z)),Y) = Y ).
cnf(mckenzie4,axiom,
meet(meet(join(X,Y),join(Y,Z)),Y) = Y ).
%----Denial of conclusion:
cnf(prove_commutativity_of_meet,negated_conjecture,
meet(b,a) != meet(a,b) ).
%--------------------------------------------------------------------------