TPTP Problem File: LAT009-1.p
View Solutions
- Solve Problem
%--------------------------------------------------------------------------
% File : LAT009-1 : TPTP v9.0.0. Released v2.2.0.
% Domain : Lattice Theory
% Problem : A self-dual form of distributivity for lattice theory.
% Version : [MP96] (equality) axioms : Especial.
% English : From lattice theory axioms and a self-dual form of
% distributivity, we prove ordinary distributivity.
% Refs : [McC98] McCune (1998), Email to G. Sutcliffe
% : [MP96] McCune & Padmanabhan (1996), Automated Deduction in Eq
% Source : [McC98]
% Names : LT-5 [MP96]
% Status : Unsatisfiable
% Rating : 0.09 v8.2.0, 0.17 v8.1.0, 0.20 v7.5.0, 0.12 v7.4.0, 0.17 v7.3.0, 0.05 v7.1.0, 0.00 v7.0.0, 0.11 v6.4.0, 0.16 v6.3.0, 0.12 v6.2.0, 0.14 v6.1.0, 0.19 v6.0.0, 0.38 v5.5.0, 0.37 v5.4.0, 0.20 v5.3.0, 0.08 v5.2.0, 0.14 v5.1.0, 0.13 v5.0.0, 0.14 v4.1.0, 0.18 v4.0.1, 0.14 v4.0.0, 0.08 v3.7.0, 0.11 v3.4.0, 0.12 v3.3.0, 0.00 v2.2.1
% Syntax : Number of clauses : 10 ( 10 unt; 0 nHn; 1 RR)
% Number of literals : 10 ( 10 equ; 1 neg)
% Maximal clause size : 1 ( 1 avg)
% Maximal term depth : 5 ( 2 avg)
% Number of predicates : 1 ( 0 usr; 0 prp; 2-2 aty)
% Number of functors : 5 ( 5 usr; 3 con; 0-2 aty)
% Number of variables : 19 ( 2 sgn)
% SPC : CNF_UNS_RFO_PEQ_UEQ
% Comments :
%--------------------------------------------------------------------------
%----Include lattice axioms
include('Axioms/LAT001-0.ax').
%--------------------------------------------------------------------------
%----A self-dual form of distributivity for lattice theory.
cnf(distributivity_dual,axiom,
join(meet(join(meet(X,Y),Z),Y),meet(Z,X)) = meet(join(meet(join(X,Y),Z),Y),join(Z,X)) ).
%----Denial of ordinary distributivity.
cnf(prove_distributivity,negated_conjecture,
join(a,meet(b,c)) != meet(join(a,b),join(a,c)) ).
%--------------------------------------------------------------------------