TPTP Problem File: LAT005-6.p
View Solutions
- Solve Problem
%--------------------------------------------------------------------------
% File : LAT005-6 : TPTP v9.0.0. Released v1.1.0.
% Domain : Lattice Theory
% Problem : SAM's lemma
% Version : [Wos88] axioms.
% English : Let L be a modular lattice with 0 and 1. Suppose that A and
% B are elements of L such that (A v B) and (A ^ B) both have
% not necessarily unique complements. Then, (A v B)' =
% ((A v B)' v ((A ^ B)' ^ B)) ^ ((A v B)' v ((A ^ B)' ^ A)).
% Refs : [Wos88] Wos (1988), Automated Reasoning - 33 Basic Research Pr
% Source : [Wos88]
% Names : Test Problem 12 [Wos88]
% : SAM's lemma [Wos88]
% Status : Unsatisfiable
% Rating : 0.15 v9.0.0, 0.19 v8.2.0, 0.17 v8.1.0, 0.00 v7.5.0, 0.10 v7.4.0, 0.00 v6.0.0, 0.22 v5.5.0, 0.50 v5.4.0, 0.53 v5.3.0, 0.50 v5.2.0, 0.25 v5.1.0, 0.29 v4.1.0, 0.33 v4.0.1, 0.17 v4.0.0, 0.33 v3.7.0, 0.17 v3.5.0, 0.00 v3.1.0, 0.22 v2.7.0, 0.00 v2.6.0, 0.29 v2.5.0, 0.00 v2.4.0, 0.67 v2.3.0, 0.33 v2.2.1, 0.78 v2.2.0, 0.71 v2.1.0, 0.60 v2.0.0
% Syntax : Number of clauses : 37 ( 23 unt; 0 nHn; 25 RR)
% Number of literals : 73 ( 2 equ; 37 neg)
% Maximal clause size : 5 ( 1 avg)
% Maximal term depth : 2 ( 1 avg)
% Number of predicates : 3 ( 2 usr; 0 prp; 2-3 aty)
% Number of functors : 14 ( 14 usr; 12 con; 0-2 aty)
% Number of variables : 82 ( 6 sgn)
% SPC : CNF_UNS_RFO_SEQ_HRN
% Comments : This uses the fixed version of the [MOW76] axioms, plus some
% redundant extras.
%--------------------------------------------------------------------------
%----Include Lattice theory axioms
include('Axioms/LAT002-0.ax').
%--------------------------------------------------------------------------
%----Redundant commuted version
cnf(join_x_and_1,axiom,
join(X,n1,n1) ).
%----Redundant commuted version
cnf(join_x_and_0,axiom,
join(X,n0,X) ).
%----Redundant commuted version
cnf(meet_x_and_0,axiom,
meet(X,n0,n0) ).
%----Redundant commuted version
cnf(meet_x_and_1,axiom,
meet(X,n1,X) ).
%----These two are extra modularity axioms (X ^ Z) = Z implies that
%----(X ^ (Y v Z)) = (Z v (X ^ Y)),
cnf(modularity3,axiom,
( ~ meet(X,Z,Z)
| ~ join(Y,Z,Y1)
| ~ meet(X,Y,X1)
| ~ meet(X,Y1,Z1)
| join(Z,X1,Z1) ) ).
cnf(modularity4,axiom,
( ~ meet(X,Z,Z)
| ~ join(Y,Z,Y1)
| ~ meet(X,Y,X1)
| ~ join(Z,X1,Z1)
| meet(X,Y1,Z1) ) ).
%----Negation of Sams Lemma :
%----This version is not as it appears in [McCharen, et al., 1986] Rather
%----it has been taken from the OTTER version, which corresponds to [Wos,
%----1988]
cnf(meet_a_and_b,negated_conjecture,
meet(a,b,c) ).
cnf(join_c_and_r2,negated_conjecture,
join(c,r2,n1) ).
cnf(meet_c_and_r2,negated_conjecture,
meet(c,r2,n0) ).
cnf(meet_r2_and_b,negated_conjecture,
meet(r2,b,e) ).
cnf(join_a_and_b,negated_conjecture,
join(a,b,c2) ).
cnf(join_c2_and_r1,negated_conjecture,
join(c2,r1,n1) ).
cnf(meet_c2_and_r1,negated_conjecture,
meet(c2,r1,n0) ).
cnf(meet_r2_and_a,negated_conjecture,
meet(r2,a,d) ).
cnf(join_r1_and_e,negated_conjecture,
join(r1,e,a2) ).
cnf(join_r1_and_d,negated_conjecture,
join(r1,d,b2) ).
cnf(meet_a2_and_b2,negated_conjecture,
~ meet(a2,b2,r1) ).
%--------------------------------------------------------------------------