TPTP Problem File: LAT005-5.p
View Solutions
- Solve Problem
%--------------------------------------------------------------------------
% File : LAT005-5 : TPTP v9.0.0. Released v1.1.0.
% Domain : Lattice Theory
% Problem : SAM's lemma
% Version : [MOW76] axioms : Incomplete > Reduced & Augmented > Complete.
% English : Let L be a modular lattice with 0 and 1. Suppose that A and
% B are elements of L such that (A v B) and (A ^ B) both have
% not necessarily unique complements. Then, (A v B)' =
% ((A v B)' v ((A ^ B)' ^ B)) ^ ((A v B)' v ((A ^ B)' ^ A)).
% Refs : [GO+69] Guard et al. (1969), Semi-Automated Mathematics
% : [MOW76] McCharen et al. (1976), Problems and Experiments for a
% Source : [ANL]
% Names : SAMslemma.ver1.in [ANL]
% Status : Unsatisfiable
% Rating : 0.23 v9.0.0, 0.25 v8.1.0, 0.00 v7.5.0, 0.10 v7.4.0, 0.00 v6.0.0, 0.22 v5.5.0, 0.50 v5.4.0, 0.53 v5.3.0, 0.50 v5.2.0, 0.25 v5.1.0, 0.14 v4.1.0, 0.11 v4.0.1, 0.00 v4.0.0, 0.17 v3.5.0, 0.00 v3.1.0, 0.22 v2.7.0, 0.17 v2.6.0, 0.29 v2.5.0, 0.00 v2.4.0, 0.00 v2.3.0, 0.17 v2.2.1, 0.78 v2.2.0, 0.71 v2.1.0, 0.60 v2.0.0
% Syntax : Number of clauses : 31 ( 19 unt; 0 nHn; 23 RR)
% Number of literals : 59 ( 2 equ; 29 neg)
% Maximal clause size : 5 ( 1 avg)
% Maximal term depth : 2 ( 1 avg)
% Number of predicates : 3 ( 2 usr; 0 prp; 2-3 aty)
% Number of functors : 14 ( 14 usr; 12 con; 0-2 aty)
% Number of variables : 66 ( 4 sgn)
% SPC : CNF_UNS_RFO_SEQ_HRN
% Comments : This uses the fixed version of the [MOW76] axioms.
%--------------------------------------------------------------------------
%----Include Lattice theory axioms
include('Axioms/LAT002-0.ax').
%--------------------------------------------------------------------------
%----Negation of Sams Lemma :
%----This version is not as it appears in [McCharen, et al., 1986] Rather
%----it has been taken from the OTTER version, which corresponds to [Wos,
%----1988]
cnf(meet_a_and_b,negated_conjecture,
meet(a,b,c) ).
cnf(join_c_and_r2,negated_conjecture,
join(c,r2,n1) ).
cnf(meet_c_and_r2,negated_conjecture,
meet(c,r2,n0) ).
cnf(meet_r2_and_b,negated_conjecture,
meet(r2,b,e) ).
cnf(join_a_and_b,negated_conjecture,
join(a,b,c2) ).
cnf(join_c2_and_r1,negated_conjecture,
join(c2,r1,n1) ).
cnf(meet_c2_and_r1,negated_conjecture,
meet(c2,r1,n0) ).
cnf(meet_r2_and_a,negated_conjecture,
meet(r2,a,d) ).
cnf(join_r1_and_e,negated_conjecture,
join(r1,e,a2) ).
cnf(join_r1_and_d,negated_conjecture,
join(r1,d,b2) ).
cnf(meet_a2_and_b2,negated_conjecture,
~ meet(a2,b2,r1) ).
%--------------------------------------------------------------------------