TPTP Problem File: LAT005-4.p
View Solutions
- Solve Problem
%--------------------------------------------------------------------------
% File : LAT005-4 : TPTP v9.0.0. Released v1.1.0.
% Domain : Lattice Theory
% Problem : SAM's lemma
% Version : [McC88] (equality) axioms.
% Theorem formulation : No explicit complement.
% English : Let L be a modular lattice with 0 and 1. Suppose that A and
% B are elements of L such that (A v B) and (A ^ B) both have
% not necessarily unique complements. Then, (A v B)' =
% ((A v B)' v ((A ^ B)' ^ B)) ^ ((A v B)' v ((A ^ B)' ^ A)).
% Refs : [MP96] McCune & Padmanabhan (1996), Automated Deduction in Eq
% : [McC88] McCune (1988), Challenge Equality Problems in Lattice
% : [Wos88] Wos (1988), Automated Reasoning - 33 Basic Research Pr
% Source : [Wos88]
% Names : Test Problem 12 [Wos88]
% : SAM's lemma [Wos88]
% : LT-2 [MP96]
% Status : Unsatisfiable
% Rating : 0.20 v9.0.0, 0.13 v8.2.0, 0.25 v8.1.0, 0.26 v7.5.0, 0.18 v7.4.0, 0.24 v7.3.0, 0.15 v7.2.0, 0.17 v7.1.0, 0.09 v7.0.0, 0.23 v6.4.0, 0.21 v6.3.0, 0.30 v6.2.0, 0.50 v6.1.0, 0.64 v6.0.0, 0.71 v5.5.0, 0.62 v5.4.0, 0.67 v5.3.0, 0.80 v5.2.0, 0.62 v5.1.0, 0.78 v5.0.0, 0.70 v4.1.0, 0.44 v4.0.1, 0.62 v4.0.0, 0.71 v3.7.0, 0.29 v3.4.0, 0.17 v3.3.0, 0.33 v3.2.0, 0.22 v3.1.0, 0.20 v2.7.0, 0.25 v2.6.0, 0.17 v2.5.0, 0.50 v2.4.0, 0.50 v2.2.1, 0.67 v2.2.0, 0.75 v2.1.0, 1.00 v2.0.0
% Syntax : Number of clauses : 20 ( 19 unt; 0 nHn; 7 RR)
% Number of literals : 21 ( 21 equ; 2 neg)
% Maximal clause size : 2 ( 1 avg)
% Maximal term depth : 3 ( 1 avg)
% Number of predicates : 1 ( 0 usr; 0 prp; 2-2 aty)
% Number of functors : 10 ( 10 usr; 8 con; 0-2 aty)
% Number of variables : 23 ( 4 sgn)
% SPC : CNF_UNS_RFO_PEQ_NUE
% Comments : The [Wos88] version has four redundant axioms that are not
% included here.
%--------------------------------------------------------------------------
%----Include lattice axioms
include('Axioms/LAT001-0.ax').
%----Include modular lattice axioms
include('Axioms/LAT001-1.ax').
%--------------------------------------------------------------------------
cnf(r2_complement_meet_a_b_1,negated_conjecture,
join(r2,meet(a,b)) = n1 ).
cnf(r2_complement_meet_a_b_2,negated_conjecture,
meet(r2,meet(a,b)) = n0 ).
cnf(r1_complement_join_a_b_1,negated_conjecture,
join(r1,join(a,b)) = n1 ).
cnf(r1_complement_join_a_b_2,negated_conjecture,
meet(r1,join(a,b)) = n0 ).
cnf(define_b2,negated_conjecture,
join(r1,meet(a,r2)) = b2 ).
cnf(define_a2,negated_conjecture,
join(r1,meet(b,r2)) = a2 ).
cnf(prove_SAMs_lemma,negated_conjecture,
meet(a2,b2) != r1 ).
%--------------------------------------------------------------------------