TPTP Problem File: LAT004-1.p
View Solutions
- Solve Problem
%--------------------------------------------------------------------------
% File : LAT004-1 : TPTP v9.0.0. Released v1.0.0.
% Domain : Lattice Theory
% Problem : A fairly complex equation to establish
% Version : [McC88] (equality) axioms.
% English : If X' = U v V and Y' = U ^ V and U" = UC and V" = VC then
% (U v V)" = (UC ^ VC). " means unique complement.
% Refs : [Bum65] Bumcroft (1965), Proceedings of the Glasgow Mathematic
% : [GO+69] Guard et al. (1969), Semi-Automated Mathematics
% : [McC88] McCune (1988), Challenge Equality Problems in Lattice
% Source : [McC88]
% Names : L3 [McC88]
% Status : Unsatisfiable
% Rating : 0.95 v7.4.0, 0.94 v7.3.0, 1.00 v7.0.0, 0.93 v6.3.0, 1.00 v2.0.0
% Syntax : Number of clauses : 25 ( 17 unt; 1 nHn; 12 RR)
% Number of literals : 37 ( 20 equ; 12 neg)
% Maximal clause size : 3 ( 1 avg)
% Maximal term depth : 3 ( 1 avg)
% Number of predicates : 3 ( 2 usr; 0 prp; 2-2 aty)
% Number of functors : 11 ( 11 usr; 8 con; 0-2 aty)
% Number of variables : 38 ( 4 sgn)
% SPC : CNF_UNS_RFO_SEQ_NHN
% Comments :
%--------------------------------------------------------------------------
%----Include lattice axioms
include('Axioms/LAT001-0.ax').
%----Include modular lattice axioms
include('Axioms/LAT001-1.ax').
%----Include definition of complement
include('Axioms/LAT001-2.ax').
%----Include definition of unique complement
include('Axioms/LAT001-3.ax').
%--------------------------------------------------------------------------
cnf(complement_of_a_join_b,hypothesis,
complement(r1,join(a,b)) ).
cnf(complement_of_a_meet_b,hypothesis,
complement(r2,meet(a,b)) ).
cnf(unique_complement_of_a,hypothesis,
unique_complement(a,a2) ).
cnf(unique_complement_of_b,hypothesis,
unique_complement(b,b2) ).
cnf(prove_unique_complement,negated_conjecture,
~ unique_complement(join(a,b),meet(a2,b2)) ).
%--------------------------------------------------------------------------