TPTP Problem File: LAT002-1.p
View Solutions
- Solve Problem
%--------------------------------------------------------------------------
% File : LAT002-1 : TPTP v9.0.0. Released v1.0.0.
% Domain : Lattice Theory
% Problem : If X' = U v V and Y' = U ^ V, then U' exists
% Version : [McC88] (equality) axioms.
% English : The theorem states that there is a complement of "a" in a
% modular lattice with 0 and 1.
% Refs : [Bum65] Bumcroft (1965), Proceedings of the Glasgow Mathematic
% : [GO+69] Guard et al. (1969), Semi-Automated Mathematics
% : [McC88] McCune (1988), Challenge Equality Problems in Lattice
% Source : [McC88]
% Names : L1b [McC88]
% Status : Unsatisfiable
% Rating : 0.54 v9.0.0, 0.50 v8.2.0, 0.67 v8.1.0, 0.56 v7.5.0, 0.50 v7.4.0, 0.22 v7.3.0, 0.33 v7.2.0, 0.25 v7.1.0, 0.29 v6.3.0, 0.33 v6.2.0, 0.00 v6.1.0, 0.60 v6.0.0, 0.67 v5.5.0, 0.88 v5.4.0, 0.87 v5.3.0, 0.83 v5.2.0, 0.75 v5.1.0, 0.71 v5.0.0, 0.57 v4.1.0, 0.56 v4.0.1, 0.33 v4.0.0, 0.50 v3.5.0, 0.33 v3.3.0, 0.43 v3.1.0, 0.78 v2.7.0, 0.83 v2.6.0, 0.71 v2.5.0, 1.00 v2.4.0, 0.83 v2.2.1, 0.89 v2.2.0, 0.86 v2.1.0, 1.00 v2.0.0
% Syntax : Number of clauses : 19 ( 15 unt; 0 nHn; 6 RR)
% Number of literals : 24 ( 18 equ; 6 neg)
% Maximal clause size : 3 ( 1 avg)
% Maximal term depth : 3 ( 1 avg)
% Number of predicates : 2 ( 1 usr; 0 prp; 2-2 aty)
% Number of functors : 8 ( 8 usr; 6 con; 0-2 aty)
% Number of variables : 30 ( 5 sgn)
% SPC : CNF_UNS_RFO_SEQ_HRN
% Comments :
%--------------------------------------------------------------------------
%----Include lattice axioms
include('Axioms/LAT001-0.ax').
%----Include modular lattice axioms
include('Axioms/LAT001-1.ax').
%----Include definition of complement
include('Axioms/LAT001-2.ax').
%--------------------------------------------------------------------------
cnf(complement_of_a_join_b,hypothesis,
complement(r1,join(a,b)) ).
cnf(complement_of_a_meet_b,hypothesis,
complement(r2,meet(a,b)) ).
cnf(prove_complememt_exists,negated_conjecture,
~ complement(a,W) ).
%--------------------------------------------------------------------------