TPTP Problem File: KRS273^7.p
View Solutions
- Solve Problem
%------------------------------------------------------------------------------
% File : KRS273^7 : TPTP v9.0.0. Released v5.5.0.
% Domain : Knowledge Representation
% Problem : Querying description logic knowledge bases
% Version : [Ben12] axioms.
% English :
% Refs : [CD+07] Calvanese et al. (2007), EQL-Lite: Effective First-Ord
% : [Ben12] Benzmueller (2012), Email to Geoff Sutcliffe
% Source : [Ben12]
% Names : s4-cumul-APM006+1 [Ben12]
% Status : CounterSatisfiable
% Rating : 0.67 v9.0.0, 0.75 v8.2.0, 1.00 v8.1.0, 0.80 v7.4.0, 0.75 v7.2.0, 0.67 v5.5.0
% Syntax : Number of formulae : 92 ( 39 unt; 46 typ; 32 def)
% Number of atoms : 158 ( 36 equ; 0 cnn)
% Maximal formula atoms : 21 ( 3 avg)
% Number of connectives : 223 ( 5 ~; 5 |; 9 &; 194 @)
% ( 0 <=>; 10 =>; 0 <=; 0 <~>)
% Maximal formula depth : 15 ( 3 avg)
% Number of types : 3 ( 1 usr)
% Number of type conns : 189 ( 189 >; 0 *; 0 +; 0 <<)
% Number of symbols : 56 ( 54 usr; 16 con; 0-3 aty)
% Number of variables : 99 ( 52 ^; 40 !; 7 ?; 99 :)
% SPC : TH0_CSA_EQU_NAR
% Comments :
%------------------------------------------------------------------------------
%----Include axioms for Modal logic S4 under cumulative domains
include('Axioms/LCL015^0.ax').
include('Axioms/LCL013^5.ax').
include('Axioms/LCL015^1.ax').
%------------------------------------------------------------------------------
thf(female_type,type,
female: mu > $i > $o ).
thf(parent_type,type,
parent: mu > mu > $i > $o ).
thf(male_type,type,
male: mu > $i > $o ).
thf(q2_type,type,
q2: mu > $i > $o ).
thf(bob_type,type,
bob: mu ).
thf(existence_of_bob_ax,axiom,
! [V: $i] : ( exists_in_world @ bob @ V ) ).
thf(jane_type,type,
jane: mu ).
thf(existence_of_jane_ax,axiom,
! [V: $i] : ( exists_in_world @ jane @ V ) ).
thf(ann_type,type,
ann: mu ).
thf(existence_of_ann_ax,axiom,
! [V: $i] : ( exists_in_world @ ann @ V ) ).
thf(mary_type,type,
mary: mu ).
thf(existence_of_mary_ax,axiom,
! [V: $i] : ( exists_in_world @ mary @ V ) ).
thf(paul_type,type,
paul: mu ).
thf(existence_of_paul_ax,axiom,
! [V: $i] : ( exists_in_world @ paul @ V ) ).
thf(john_type,type,
john: mu ).
thf(existence_of_john_ax,axiom,
! [V: $i] : ( exists_in_world @ john @ V ) ).
thf(abox,axiom,
mvalid @ ( mbox_s4 @ ( mand @ ( female @ mary ) @ ( mand @ ( female @ ann ) @ ( mand @ ( female @ jane ) @ ( mand @ ( male @ bob ) @ ( mand @ ( male @ john ) @ ( mand @ ( male @ paul ) @ ( mand @ ( parent @ bob @ mary ) @ ( mand @ ( parent @ bob @ ann ) @ ( mand @ ( parent @ john @ paul ) @ ( parent @ mary @ jane ) ) ) ) ) ) ) ) ) ) ) ).
thf(tbox,axiom,
( mvalid
@ ( mforall_ind
@ ^ [X: mu] : ( mimplies @ ( mbox_s4 @ ( male @ X ) ) @ ( mbox_s4 @ ( mnot @ ( female @ X ) ) ) ) ) ) ).
thf(query,axiom,
( mvalid
@ ( mforall_ind
@ ^ [X: mu] :
( mequiv @ ( q2 @ X )
@ ( mand @ ( mbox_s4 @ ( male @ X ) )
@ ( mnot
@ ( mbox_s4
@ ( mexists_ind
@ ^ [Y: mu] : ( mand @ ( parent @ X @ Y ) @ ( female @ Y ) ) ) ) ) ) ) ) ) ).
thf(con,conjecture,
mvalid @ ( mand @ ( q2 @ john ) @ ( q2 @ paul ) ) ).
%------------------------------------------------------------------------------