TPTP Problem File: KRS172+1.p
View Solutions
- Solve Problem
%------------------------------------------------------------------------------
% File : KRS172+1 : TPTP v9.0.0. Released v3.1.0.
% Domain : Knowledge Representation (Semantic Web)
% Problem : The same property extension means equivalentProperty
% Version : Especial.
% English : If p and q have the same property extension then p
% equivalentProperty q.
% Refs : [Bec03] Bechhofer (2003), Email to G. Sutcliffe
% : [TR+04] Tsarkov et al. (2004), Using Vampire to Reason with OW
% Source : [Bec03]
% Names : positive_equivalentProperty-Manifest004 [Bec03]
% Status : Theorem
% Rating : 0.00 v5.3.0, 0.09 v5.2.0, 0.00 v4.1.0, 0.04 v4.0.1, 0.09 v4.0.0, 0.12 v3.7.0, 0.00 v3.2.0, 0.11 v3.1.0
% Syntax : Number of formulae : 19 ( 1 unt; 0 def)
% Number of atoms : 52 ( 11 equ)
% Maximal formula atoms : 6 ( 2 avg)
% Number of connectives : 37 ( 4 ~; 0 |; 15 &)
% ( 5 <=>; 13 =>; 0 <=; 0 <~>)
% Maximal formula depth : 6 ( 5 avg)
% Maximal term depth : 1 ( 1 avg)
% Number of predicates : 8 ( 7 usr; 0 prp; 1-2 aty)
% Number of functors : 1 ( 1 usr; 1 con; 0-0 aty)
% Number of variables : 40 ( 40 !; 0 ?)
% SPC : FOF_THM_EPR_SEQ
% Comments : Sean Bechhofer says there are some errors in the encoding of
% datatypes, so this problem may not be perfect. At least it's
% still representative of the type of reasoning required for OWL.
%------------------------------------------------------------------------------
fof(cd_substitution_1,axiom,
! [A,B] :
( ( A = B
& cd(A) )
=> cd(B) ) ).
fof(cowlNothing_substitution_1,axiom,
! [A,B] :
( ( A = B
& cowlNothing(A) )
=> cowlNothing(B) ) ).
fof(cowlThing_substitution_1,axiom,
! [A,B] :
( ( A = B
& cowlThing(A) )
=> cowlThing(B) ) ).
fof(rp_substitution_1,axiom,
! [A,B,C] :
( ( A = B
& rp(A,C) )
=> rp(B,C) ) ).
fof(rp_substitution_2,axiom,
! [A,B,C] :
( ( A = B
& rp(C,A) )
=> rp(C,B) ) ).
fof(rq_substitution_1,axiom,
! [A,B,C] :
( ( A = B
& rq(A,C) )
=> rq(B,C) ) ).
fof(rq_substitution_2,axiom,
! [A,B,C] :
( ( A = B
& rq(C,A) )
=> rq(C,B) ) ).
fof(xsd_integer_substitution_1,axiom,
! [A,B] :
( ( A = B
& xsd_integer(A) )
=> xsd_integer(B) ) ).
fof(xsd_string_substitution_1,axiom,
! [A,B] :
( ( A = B
& xsd_string(A) )
=> xsd_string(B) ) ).
%----Thing and Nothing
fof(axiom_0,axiom,
! [X] :
( cowlThing(X)
& ~ cowlNothing(X) ) ).
%----String and Integer disjoint
fof(axiom_1,axiom,
! [X] :
( xsd_string(X)
<=> ~ xsd_integer(X) ) ).
%----Equality cd
fof(axiom_2,axiom,
! [X] :
( cd(X)
<=> rq(X,iv) ) ).
%----Equality cd
fof(axiom_3,axiom,
! [X] :
( cd(X)
<=> rp(X,iv) ) ).
%----Functional: rp
fof(axiom_4,axiom,
! [X,Y,Z] :
( ( rp(X,Y)
& rp(X,Z) )
=> Y = Z ) ).
%----Domain: rp
fof(axiom_5,axiom,
! [X,Y] :
( rp(X,Y)
=> cd(X) ) ).
%----Functional: rq
fof(axiom_6,axiom,
! [X,Y,Z] :
( ( rq(X,Y)
& rq(X,Z) )
=> Y = Z ) ).
%----Domain: rq
fof(axiom_7,axiom,
! [X,Y] :
( rq(X,Y)
=> cd(X) ) ).
%----iv
fof(axiom_8,axiom,
cowlThing(iv) ).
%----Thing and Nothing
%----String and Integer disjoint
fof(the_axiom,conjecture,
( ! [X] :
( cowlThing(X)
& ~ cowlNothing(X) )
& ! [X] :
( xsd_string(X)
<=> ~ xsd_integer(X) )
& ! [X,Y] :
( rq(X,Y)
<=> rp(X,Y) ) ) ).
%------------------------------------------------------------------------------