TPTP Problem File: KRS167+1.p
View Solutions
- Solve Problem
%------------------------------------------------------------------------------
% File : KRS167+1 : TPTP v9.0.0. Released v3.1.0.
% Domain : Knowledge Representation (Semantic Web)
% Problem : Two classes with the same complete description are equivalent
% Version : Especial.
% English :
% Refs : [Bec03] Bechhofer (2003), Email to G. Sutcliffe
% : [TR+04] Tsarkov et al. (2004), Using Vampire to Reason with OW
% Source : [Bec03]
% Names : positive_equivalentClass-Manifest004 [Bec03]
% Status : Theorem
% Rating : 0.09 v9.0.0, 0.08 v8.2.0, 0.06 v8.1.0, 0.03 v7.2.0, 0.00 v7.0.0, 0.03 v6.4.0, 0.08 v6.3.0, 0.00 v6.1.0, 0.03 v6.0.0, 0.04 v5.5.0, 0.11 v5.4.0, 0.14 v5.3.0, 0.19 v5.2.0, 0.00 v4.1.0, 0.04 v4.0.1, 0.09 v4.0.0, 0.08 v3.7.0, 0.00 v3.2.0, 0.11 v3.1.0
% Syntax : Number of formulae : 13 ( 0 unt; 0 def)
% Number of atoms : 44 ( 10 equ)
% Maximal formula atoms : 6 ( 3 avg)
% Number of connectives : 35 ( 4 ~; 0 |; 16 &)
% ( 5 <=>; 10 =>; 0 <=; 0 <~>)
% Maximal formula depth : 8 ( 6 avg)
% Maximal term depth : 1 ( 1 avg)
% Number of predicates : 8 ( 7 usr; 0 prp; 1-2 aty)
% Number of functors : 0 ( 0 usr; 0 con; --- aty)
% Number of variables : 31 ( 29 !; 2 ?)
% SPC : FOF_THM_RFO_SEQ
% Comments : Sean Bechhofer says there are some errors in the encoding of
% datatypes, so this problem may not be perfect. At least it's
% still representative of the type of reasoning required for OWL.
%------------------------------------------------------------------------------
fof(cc1_substitution_1,axiom,
! [A,B] :
( ( A = B
& cc1(A) )
=> cc1(B) ) ).
fof(cc2_substitution_1,axiom,
! [A,B] :
( ( A = B
& cc2(A) )
=> cc2(B) ) ).
fof(cowlNothing_substitution_1,axiom,
! [A,B] :
( ( A = B
& cowlNothing(A) )
=> cowlNothing(B) ) ).
fof(cowlThing_substitution_1,axiom,
! [A,B] :
( ( A = B
& cowlThing(A) )
=> cowlThing(B) ) ).
fof(rp_substitution_1,axiom,
! [A,B,C] :
( ( A = B
& rp(A,C) )
=> rp(B,C) ) ).
fof(rp_substitution_2,axiom,
! [A,B,C] :
( ( A = B
& rp(C,A) )
=> rp(C,B) ) ).
fof(xsd_integer_substitution_1,axiom,
! [A,B] :
( ( A = B
& xsd_integer(A) )
=> xsd_integer(B) ) ).
fof(xsd_string_substitution_1,axiom,
! [A,B] :
( ( A = B
& xsd_string(A) )
=> xsd_string(B) ) ).
%----Thing and Nothing
fof(axiom_0,axiom,
! [X] :
( cowlThing(X)
& ~ cowlNothing(X) ) ).
%----String and Integer disjoint
fof(axiom_1,axiom,
! [X] :
( xsd_string(X)
<=> ~ xsd_integer(X) ) ).
%----Equality cc1
fof(axiom_2,axiom,
! [X] :
( cc1(X)
<=> ( ? [Y0] : rp(X,Y0)
& ! [Y0,Y1] :
( ( rp(X,Y0)
& rp(X,Y1) )
=> Y0 = Y1 ) ) ) ).
%----Equality cc2
fof(axiom_3,axiom,
! [X] :
( cc2(X)
<=> ( ? [Y0] : rp(X,Y0)
& ! [Y0,Y1] :
( ( rp(X,Y0)
& rp(X,Y1) )
=> Y0 = Y1 ) ) ) ).
%----Thing and Nothing
%----String and Integer disjoint
%----Equality cc1
fof(the_axiom,conjecture,
( ! [X] :
( cowlThing(X)
& ~ cowlNothing(X) )
& ! [X] :
( xsd_string(X)
<=> ~ xsd_integer(X) )
& ! [X] :
( cc1(X)
<=> cc2(X) ) ) ).
%------------------------------------------------------------------------------