TPTP Problem File: KRS162+1.p
View Solutions
- Solve Problem
%------------------------------------------------------------------------------
% File : KRS162+1 : TPTP v9.0.0. Released v3.1.0.
% Domain : Knowledge Representation (Semantic Web)
% Problem : Entailment for three natural numbers
% Version : Especial.
% English : This entailment can be replicated for any three natural numbers
% i, j, k such that i+j >= k. In this example, they are chosen as
% 2, 3 and 5.
% Refs : [Bec03] Bechhofer (2003), Email to G. Sutcliffe
% : [TR+04] Tsarkov et al. (2004), Using Vampire to Reason with OW
% Source : [Bec03]
% Names : positive_description-logic-Manifest901 [Bec03]
% Status : Theorem
% Rating : 0.00 v5.3.0, 0.27 v5.2.0, 0.00 v4.1.0, 0.30 v4.0.0, 0.33 v3.7.0, 0.14 v3.5.0, 0.11 v3.4.0, 0.08 v3.3.0, 0.22 v3.2.0, 0.33 v3.1.0
% Syntax : Number of formulae : 20 ( 0 unt; 0 def)
% Number of atoms : 78 ( 26 equ)
% Maximal formula atoms : 28 ( 3 avg)
% Number of connectives : 77 ( 19 ~; 0 |; 39 &)
% ( 2 <=>; 17 =>; 0 <=; 0 <~>)
% Maximal formula depth : 25 ( 6 avg)
% Maximal term depth : 1 ( 1 avg)
% Number of predicates : 10 ( 9 usr; 0 prp; 1-2 aty)
% Number of functors : 0 ( 0 usr; 0 con; --- aty)
% Number of variables : 54 ( 44 !; 10 ?)
% SPC : FOF_THM_EPR_SEQ
% Comments : Sean Bechhofer says there are some errors in the encoding of
% datatypes, so this problem may not be perfect. At least it's
% still representative of the type of reasoning required for OWL.
%------------------------------------------------------------------------------
fof(cA_substitution_1,axiom,
! [A,B] :
( ( A = B
& cA(A) )
=> cA(B) ) ).
fof(cB_substitution_1,axiom,
! [A,B] :
( ( A = B
& cB(A) )
=> cB(B) ) ).
fof(cowlNothing_substitution_1,axiom,
! [A,B] :
( ( A = B
& cowlNothing(A) )
=> cowlNothing(B) ) ).
fof(cowlThing_substitution_1,axiom,
! [A,B] :
( ( A = B
& cowlThing(A) )
=> cowlThing(B) ) ).
fof(rp_substitution_1,axiom,
! [A,B,C] :
( ( A = B
& rp(A,C) )
=> rp(B,C) ) ).
fof(rp_substitution_2,axiom,
! [A,B,C] :
( ( A = B
& rp(C,A) )
=> rp(C,B) ) ).
fof(rq_substitution_1,axiom,
! [A,B,C] :
( ( A = B
& rq(A,C) )
=> rq(B,C) ) ).
fof(rq_substitution_2,axiom,
! [A,B,C] :
( ( A = B
& rq(C,A) )
=> rq(C,B) ) ).
fof(rr_substitution_1,axiom,
! [A,B,C] :
( ( A = B
& rr(A,C) )
=> rr(B,C) ) ).
fof(rr_substitution_2,axiom,
! [A,B,C] :
( ( A = B
& rr(C,A) )
=> rr(C,B) ) ).
fof(xsd_integer_substitution_1,axiom,
! [A,B] :
( ( A = B
& xsd_integer(A) )
=> xsd_integer(B) ) ).
fof(xsd_string_substitution_1,axiom,
! [A,B] :
( ( A = B
& xsd_string(A) )
=> xsd_string(B) ) ).
%----Thing and Nothing
fof(axiom_0,axiom,
! [X] :
( cowlThing(X)
& ~ cowlNothing(X) ) ).
%----String and Integer disjoint
fof(axiom_1,axiom,
! [X] :
( xsd_string(X)
<=> ~ xsd_integer(X) ) ).
%----Range: rp
fof(axiom_2,axiom,
! [X,Y] :
( rp(X,Y)
=> cA(Y) ) ).
%----Range: rq
fof(axiom_3,axiom,
! [X,Y] :
( rq(X,Y)
=> cB(Y) ) ).
fof(axiom_4,axiom,
! [X] :
~ ( cB(X)
& cA(X) ) ).
fof(axiom_5,axiom,
! [X,Y] :
( rq(X,Y)
=> rr(X,Y) ) ).
fof(axiom_6,axiom,
! [X,Y] :
( rp(X,Y)
=> rr(X,Y) ) ).
%----Thing and Nothing
%----String and Integer disjoint
fof(the_axiom,conjecture,
( ! [X] :
( cowlThing(X)
& ~ cowlNothing(X) )
& ! [X] :
( xsd_string(X)
<=> ~ xsd_integer(X) )
& ! [X] :
( ( ? [Y0,Y1] :
( rp(X,Y0)
& rp(X,Y1)
& Y0 != Y1 )
& ? [Y0,Y1,Y2] :
( rq(X,Y0)
& rq(X,Y1)
& rq(X,Y2)
& Y0 != Y1
& Y0 != Y2
& Y1 != Y2 ) )
=> ? [Y0,Y1,Y2,Y3,Y4] :
( rr(X,Y0)
& rr(X,Y1)
& rr(X,Y2)
& rr(X,Y3)
& rr(X,Y4)
& Y0 != Y1
& Y0 != Y2
& Y0 != Y3
& Y0 != Y4
& Y1 != Y2
& Y1 != Y3
& Y1 != Y4
& Y2 != Y3
& Y2 != Y4
& Y3 != Y4 ) ) ) ).
%------------------------------------------------------------------------------