TPTP Problem File: KRS158+1.p
View Solutions
- Solve Problem
%------------------------------------------------------------------------------
% File : KRS158+1 : TPTP v9.0.0. Released v3.1.0.
% Domain : Knowledge Representation (Semantic Web)
% Problem : DL Test: k_lin ABox test from DL98 systems comparison
% Version : Especial.
% English :
% Refs : [Bec03] Bechhofer (2003), Email to G. Sutcliffe
% : [TR+04] Tsarkov et al. (2004), Using Vampire to Reason with OW
% Source : [Bec03]
% Names : positive_description-logic-Manifest665 [Bec03]
% Status : Theorem
% Rating : 0.00 v6.1.0, 0.04 v6.0.0, 0.25 v5.5.0, 0.04 v5.4.0, 0.09 v5.3.0, 0.22 v5.2.0, 0.00 v3.2.0, 0.11 v3.1.0
% Syntax : Number of formulae : 31 ( 11 unt; 0 def)
% Number of atoms : 71 ( 0 equ)
% Maximal formula atoms : 13 ( 2 avg)
% Number of connectives : 47 ( 7 ~; 0 |; 21 &)
% ( 17 <=>; 2 =>; 0 <=; 0 <~>)
% Maximal formula depth : 11 ( 3 avg)
% Maximal term depth : 1 ( 1 avg)
% Number of predicates : 22 ( 22 usr; 0 prp; 1-2 aty)
% Number of functors : 3 ( 3 usr; 3 con; 0-0 aty)
% Number of variables : 31 ( 21 !; 10 ?)
% SPC : FOF_THM_RFO_NEQ
% Comments : Sean Bechhofer says there are some errors in the encoding of
% datatypes, so this problem may not be perfect. At least it's
% still representative of the type of reasoning required for OWL.
%------------------------------------------------------------------------------
%----Thing and Nothing
fof(axiom_0,axiom,
! [X] :
( cowlThing(X)
& ~ cowlNothing(X) ) ).
%----String and Integer disjoint
fof(axiom_1,axiom,
! [X] :
( xsd_string(X)
<=> ~ xsd_integer(X) ) ).
%----Equality cC10
fof(axiom_2,axiom,
! [X] :
( cC10(X)
<=> ? [Y0] : ra_Px3(X,Y0) ) ).
%----Equality cC10
fof(axiom_3,axiom,
! [X] :
( cC10(X)
<=> ? [Y] :
( rR1(X,Y)
& cC2xcomp(Y) ) ) ).
%----Equality cC10xcomp
fof(axiom_4,axiom,
! [X] :
( cC10xcomp(X)
<=> ~ ? [Y] : ra_Px3(X,Y) ) ).
%----Equality cC12
fof(axiom_5,axiom,
! [X] :
( cC12(X)
<=> ( cC10xcomp(X)
& cC2xcomp(X) ) ) ).
%----Equality cC14
fof(axiom_6,axiom,
! [X] :
( cC14(X)
<=> ? [Y] :
( rR1(X,Y)
& cC12(Y) ) ) ).
%----Equality cC16
fof(axiom_7,axiom,
! [X] :
( cC16(X)
<=> ( cC14(X)
& cC8(X) ) ) ).
%----Equality cC18
fof(axiom_8,axiom,
! [X] :
( cC18(X)
<=> ( cTOP(X)
& cC16(X) ) ) ).
%----Equality cC2
fof(axiom_9,axiom,
! [X] :
( cC2(X)
<=> ~ ? [Y] : ra_Px1(X,Y) ) ).
%----Equality cC2xcomp
fof(axiom_10,axiom,
! [X] :
( cC2xcomp(X)
<=> ? [Y0] : ra_Px1(X,Y0) ) ).
%----Equality cC4
fof(axiom_11,axiom,
! [X] :
( cC4(X)
<=> ? [Y0] : ra_Px6(X,Y0) ) ).
%----Equality cC4
fof(axiom_12,axiom,
! [X] :
( cC4(X)
<=> ? [Y] :
( rR1(X,Y)
& cC2xcomp(Y) ) ) ).
%----Equality cC4xcomp
fof(axiom_13,axiom,
! [X] :
( cC4xcomp(X)
<=> ~ ? [Y] : ra_Px6(X,Y) ) ).
%----Equality cC6
fof(axiom_14,axiom,
! [X] :
( cC6(X)
<=> ( cC4xcomp(X)
& cC2xcomp(X) ) ) ).
%----Equality cC8
fof(axiom_15,axiom,
! [X] :
( cC8(X)
<=> ? [Y] :
( rR1(X,Y)
& cC6(Y) ) ) ).
%----Equality cTEST
fof(axiom_16,axiom,
! [X] :
( cTEST(X)
<=> ( cTOP(X)
& cC18(X) ) ) ).
%----iV16560
fof(axiom_17,axiom,
cowlThing(iV16560) ).
%----iV16560
fof(axiom_18,axiom,
cTEST(iV16560) ).
%----iV16560
fof(axiom_19,axiom,
cTOP(iV16560) ).
fof(axiom_20,axiom,
rR1(iV16560,iV16562) ).
fof(axiom_21,axiom,
rR1(iV16560,iV16561) ).
%----iV16561
fof(axiom_22,axiom,
cowlThing(iV16561) ).
%----iV16561
fof(axiom_23,axiom,
! [X] :
( rR1(iV16561,X)
=> cC2(X) ) ).
%----iV16561
fof(axiom_24,axiom,
cC4xcomp(iV16561) ).
%----iV16561
fof(axiom_25,axiom,
cC2xcomp(iV16561) ).
%----iV16562
fof(axiom_26,axiom,
cowlThing(iV16562) ).
%----iV16562
fof(axiom_27,axiom,
! [X] :
( rR1(iV16562,X)
=> cC2(X) ) ).
%----iV16562
fof(axiom_28,axiom,
cC10xcomp(iV16562) ).
%----iV16562
fof(axiom_29,axiom,
cC2xcomp(iV16562) ).
%----Thing and Nothing
%----String and Integer disjoint
%----iV16560
%----iV16560
%----iV16560
%----iV16560
%----iV16560
%----iV16561
%----iV16561
%----iV16562
%----iV16562
fof(the_axiom,conjecture,
( ! [X] :
( cowlThing(X)
& ~ cowlNothing(X) )
& ! [X] :
( xsd_string(X)
<=> ~ xsd_integer(X) )
& cC18(iV16560)
& cC14(iV16560)
& cC8(iV16560)
& cC16(iV16560)
& cowlThing(iV16560)
& cC6(iV16561)
& cowlThing(iV16561)
& cC12(iV16562)
& cowlThing(iV16562) ) ).
%------------------------------------------------------------------------------