TPTP Problem File: KRS155+1.p
View Solutions
- Solve Problem
%------------------------------------------------------------------------------
% File : KRS155+1 : TPTP v9.0.0. Released v3.1.0.
% Domain : Knowledge Representation (Semantic Web)
% Problem : DL Test: k_d4 ABox test from DL98 systems comparison
% Version : Especial.
% English :
% Refs : [Bec03] Bechhofer (2003), Email to G. Sutcliffe
% : [TR+04] Tsarkov et al. (2004), Using Vampire to Reason with OW
% Source : [Bec03]
% Names : positive_description-logic-Manifest662 [Bec03]
% Status : Theorem
% Rating : 0.13 v9.0.0, 0.00 v8.2.0, 0.07 v8.1.0, 0.00 v6.3.0, 0.08 v6.2.0, 0.09 v6.1.0, 0.12 v6.0.0, 0.25 v5.4.0, 0.22 v5.3.0, 0.35 v5.2.0, 0.21 v5.0.0, 0.25 v4.1.0, 0.22 v4.0.1, 0.16 v4.0.0, 0.15 v3.7.0, 0.67 v3.5.0, 0.25 v3.3.0, 0.00 v3.2.0, 0.11 v3.1.0
% Syntax : Number of formulae : 135 ( 34 unt; 0 def)
% Number of atoms : 300 ( 0 equ)
% Maximal formula atoms : 19 ( 2 avg)
% Number of connectives : 193 ( 28 ~; 0 |; 65 &)
% ( 97 <=>; 3 =>; 0 <=; 0 <~>)
% Maximal formula depth : 17 ( 4 avg)
% Maximal term depth : 1 ( 1 avg)
% Number of predicates : 102 ( 102 usr; 0 prp; 1-2 aty)
% Number of functors : 10 ( 10 usr; 10 con; 0-0 aty)
% Number of variables : 181 ( 102 !; 79 ?)
% SPC : FOF_THM_RFO_NEQ
% Comments : Sean Bechhofer says there are some errors in the encoding of
% datatypes, so this problem may not be perfect. At least it's
% still representative of the type of reasoning required for OWL.
%------------------------------------------------------------------------------
%----Thing and Nothing
fof(axiom_0,axiom,
! [X] :
( cowlThing(X)
& ~ cowlNothing(X) ) ).
%----String and Integer disjoint
fof(axiom_1,axiom,
! [X] :
( xsd_string(X)
<=> ~ xsd_integer(X) ) ).
%----Equality cC10
fof(axiom_2,axiom,
! [X] :
( cC10(X)
<=> ( cC4(X)
& cC8(X) ) ) ).
%----Equality cC12
fof(axiom_3,axiom,
! [X] :
( cC12(X)
<=> ? [Y] :
( rR1(X,Y)
& cC10(Y) ) ) ).
%----Equality cC14
fof(axiom_4,axiom,
! [X] :
( cC14(X)
<=> ~ ? [Y] : ra_Px1(X,Y) ) ).
%----Equality cC14
fof(axiom_5,axiom,
! [X] :
( cC14(X)
<=> ? [Y] :
( rR1(X,Y)
& cTOP(Y) ) ) ).
%----Equality cC14xcomp
fof(axiom_6,axiom,
! [X] :
( cC14xcomp(X)
<=> ? [Y0] : ra_Px1(X,Y0) ) ).
%----Equality cC16
fof(axiom_7,axiom,
! [X] :
( cC16(X)
<=> ? [Y0] : ra_Px2(X,Y0) ) ).
%----Equality cC16
fof(axiom_8,axiom,
! [X] :
( cC16(X)
<=> ? [Y] :
( rR1(X,Y)
& cC14xcomp(Y) ) ) ).
%----Equality cC16xcomp
fof(axiom_9,axiom,
! [X] :
( cC16xcomp(X)
<=> ~ ? [Y] : ra_Px2(X,Y) ) ).
%----Equality cC18
fof(axiom_10,axiom,
! [X] :
( cC18(X)
<=> ( cC16xcomp(X)
& cC12(X) ) ) ).
%----Equality cC2
fof(axiom_11,axiom,
! [X] :
( cC2(X)
<=> ? [Y0] : ra_Px3(X,Y0) ) ).
%----Equality cC2xcomp
fof(axiom_12,axiom,
! [X] :
( cC2xcomp(X)
<=> ~ ? [Y] : ra_Px3(X,Y) ) ).
%----Equality cC20
fof(axiom_13,axiom,
! [X] :
( cC20(X)
<=> ? [Y] :
( rR1(X,Y)
& cC2xcomp(Y) ) ) ).
%----Equality cC20
fof(axiom_14,axiom,
! [X] :
( cC20(X)
<=> ? [Y0] : ra_Px5(X,Y0) ) ).
%----Equality cC20xcomp
fof(axiom_15,axiom,
! [X] :
( cC20xcomp(X)
<=> ~ ? [Y] : ra_Px5(X,Y) ) ).
%----Equality cC22
fof(axiom_16,axiom,
! [X] :
( cC22(X)
<=> ? [Y] :
( rR1(X,Y)
& cC2xcomp(Y) ) ) ).
%----Equality cC24
fof(axiom_17,axiom,
! [X] :
( cC24(X)
<=> ? [Y] :
( rR1(X,Y)
& cC22(Y) ) ) ).
%----Equality cC26
fof(axiom_18,axiom,
! [X] :
( cC26(X)
<=> ( cC24(X)
& cC20xcomp(X) ) ) ).
%----Equality cC26
fof(axiom_19,axiom,
! [X] :
( cC26(X)
<=> ? [Y0] : ra_Px30(X,Y0) ) ).
%----Equality cC26xcomp
fof(axiom_20,axiom,
! [X] :
( cC26xcomp(X)
<=> ~ ? [Y] : ra_Px30(X,Y) ) ).
%----Equality cC28
fof(axiom_21,axiom,
! [X] :
( cC28(X)
<=> ? [Y0] : ra_Px6(X,Y0) ) ).
%----Equality cC28
fof(axiom_22,axiom,
! [X] :
( cC28(X)
<=> ? [Y] :
( rR1(X,Y)
& cC26(Y) ) ) ).
%----Equality cC28xcomp
fof(axiom_23,axiom,
! [X] :
( cC28xcomp(X)
<=> ~ ? [Y] : ra_Px6(X,Y) ) ).
%----Equality cC30
fof(axiom_24,axiom,
! [X] :
( cC30(X)
<=> ( cC18(X)
& cC28xcomp(X) ) ) ).
%----Equality cC32
fof(axiom_25,axiom,
! [X] :
( cC32(X)
<=> ? [Y] :
( rR1(X,Y)
& cC2(Y) ) ) ).
%----Equality cC32
fof(axiom_26,axiom,
! [X] :
( cC32(X)
<=> ~ ? [Y] : ra_Px7(X,Y) ) ).
%----Equality cC32xcomp
fof(axiom_27,axiom,
! [X] :
( cC32xcomp(X)
<=> ? [Y0] : ra_Px7(X,Y0) ) ).
%----Equality cC34
fof(axiom_28,axiom,
! [X] :
( cC34(X)
<=> ? [Y0] : ra_Px9(X,Y0) ) ).
%----Equality cC34
fof(axiom_29,axiom,
! [X] :
( cC34(X)
<=> ? [Y] :
( rR1(X,Y)
& cC32xcomp(Y) ) ) ).
%----Equality cC34xcomp
fof(axiom_30,axiom,
! [X] :
( cC34xcomp(X)
<=> ~ ? [Y] : ra_Px9(X,Y) ) ).
%----Equality cC36
fof(axiom_31,axiom,
! [X] :
( cC36(X)
<=> ? [Y] :
( rR1(X,Y)
& cC2(Y) ) ) ).
%----Equality cC36
fof(axiom_32,axiom,
! [X] :
( cC36(X)
<=> ? [Y0] : ra_Px8(X,Y0) ) ).
%----Equality cC36xcomp
fof(axiom_33,axiom,
! [X] :
( cC36xcomp(X)
<=> ~ ? [Y] : ra_Px8(X,Y) ) ).
%----Equality cC38
fof(axiom_34,axiom,
! [X] :
( cC38(X)
<=> ? [Y] :
( rR1(X,Y)
& cC36xcomp(Y) ) ) ).
%----Equality cC4
fof(axiom_35,axiom,
! [X] :
( cC4(X)
<=> ? [Y] :
( rR1(X,Y)
& cC2xcomp(Y) ) ) ).
%----Equality cC40
fof(axiom_36,axiom,
! [X] :
( cC40(X)
<=> ? [Y] :
( rR1(X,Y)
& cC38(Y) ) ) ).
%----Equality cC42
fof(axiom_37,axiom,
! [X] :
( cC42(X)
<=> ~ ? [Y] : ra_Px31(X,Y) ) ).
%----Equality cC42
fof(axiom_38,axiom,
! [X] :
( cC42(X)
<=> ( cC40(X)
& cC34xcomp(X) ) ) ).
%----Equality cC42xcomp
fof(axiom_39,axiom,
! [X] :
( cC42xcomp(X)
<=> ? [Y0] : ra_Px31(X,Y0) ) ).
%----Equality cC44
fof(axiom_40,axiom,
! [X] :
( cC44(X)
<=> ~ ? [Y] : ra_Px10(X,Y) ) ).
%----Equality cC44
fof(axiom_41,axiom,
! [X] :
( cC44(X)
<=> ? [Y] :
( rR1(X,Y)
& cC42(Y) ) ) ).
%----Equality cC44xcomp
fof(axiom_42,axiom,
! [X] :
( cC44xcomp(X)
<=> ? [Y0] : ra_Px10(X,Y0) ) ).
%----Equality cC46
fof(axiom_43,axiom,
! [X] :
( cC46(X)
<=> ( cC44xcomp(X)
& cC30(X) ) ) ).
%----Equality cC48
fof(axiom_44,axiom,
! [X] :
( cC48(X)
<=> ? [Y] :
( rR1(X,Y)
& cC2xcomp(Y) ) ) ).
%----Equality cC48
fof(axiom_45,axiom,
! [X] :
( cC48(X)
<=> ? [Y0] : ra_Px12(X,Y0) ) ).
%----Equality cC48xcomp
fof(axiom_46,axiom,
! [X] :
( cC48xcomp(X)
<=> ~ ? [Y] : ra_Px12(X,Y) ) ).
%----Equality cC50
fof(axiom_47,axiom,
! [X] :
( cC50(X)
<=> ~ ? [Y] : ra_Px13(X,Y) ) ).
%----Equality cC50
fof(axiom_48,axiom,
! [X] :
( cC50(X)
<=> ? [Y] :
( rR1(X,Y)
& cC2(Y) ) ) ).
%----Equality cC50xcomp
fof(axiom_49,axiom,
! [X] :
( cC50xcomp(X)
<=> ? [Y0] : ra_Px13(X,Y0) ) ).
%----Equality cC52
fof(axiom_50,axiom,
! [X] :
( cC52(X)
<=> ? [Y0] : ra_Px32(X,Y0) ) ).
%----Equality cC52
fof(axiom_51,axiom,
! [X] :
( cC52(X)
<=> ( cC50xcomp(X)
& cC48xcomp(X) ) ) ).
%----Equality cC52xcomp
fof(axiom_52,axiom,
! [X] :
( cC52xcomp(X)
<=> ~ ? [Y] : ra_Px32(X,Y) ) ).
%----Equality cC54
fof(axiom_53,axiom,
! [X] :
( cC54(X)
<=> ? [Y] :
( rR1(X,Y)
& cC52(Y) ) ) ).
%----Equality cC54
fof(axiom_54,axiom,
! [X] :
( cC54(X)
<=> ? [Y0] : ra_Px14(X,Y0) ) ).
%----Equality cC54xcomp
fof(axiom_55,axiom,
! [X] :
( cC54xcomp(X)
<=> ~ ? [Y] : ra_Px14(X,Y) ) ).
%----Equality cC56
fof(axiom_56,axiom,
! [X] :
( cC56(X)
<=> ( cC54xcomp(X)
& cC46(X) ) ) ).
%----Equality cC58
fof(axiom_57,axiom,
! [X] :
( cC58(X)
<=> ? [Y] :
( rR1(X,Y)
& cC2(Y) ) ) ).
%----Equality cC6
fof(axiom_58,axiom,
! [X] :
( cC6(X)
<=> ~ ? [Y] : ra_Px28(X,Y) ) ).
%----Equality cC6
fof(axiom_59,axiom,
! [X] :
( cC6(X)
<=> ? [Y] :
( rR1(X,Y)
& cC2xcomp(Y) ) ) ).
%----Equality cC6xcomp
fof(axiom_60,axiom,
! [X] :
( cC6xcomp(X)
<=> ? [Y0] : ra_Px28(X,Y0) ) ).
%----Equality cC60
fof(axiom_61,axiom,
! [X] :
( cC60(X)
<=> ( cC2xcomp(X)
& cC58(X) ) ) ).
%----Equality cC62
fof(axiom_62,axiom,
! [X] :
( cC62(X)
<=> ? [Y] :
( rR1(X,Y)
& cC60(Y) ) ) ).
%----Equality cC62
fof(axiom_63,axiom,
! [X] :
( cC62(X)
<=> ? [Y0] : ra_Px17(X,Y0) ) ).
%----Equality cC62xcomp
fof(axiom_64,axiom,
! [X] :
( cC62xcomp(X)
<=> ~ ? [Y] : ra_Px17(X,Y) ) ).
%----Equality cC64
fof(axiom_65,axiom,
! [X] :
( cC64(X)
<=> ? [Y] :
( rR1(X,Y)
& cC2(Y) ) ) ).
%----Equality cC66
fof(axiom_66,axiom,
! [X] :
( cC66(X)
<=> ( cC2xcomp(X)
& cC64(X) ) ) ).
%----Equality cC68
fof(axiom_67,axiom,
! [X] :
( cC68(X)
<=> ? [Y] :
( rR1(X,Y)
& cC66(Y) ) ) ).
%----Equality cC70
fof(axiom_68,axiom,
! [X] :
( cC70(X)
<=> ? [Y] :
( rR1(X,Y)
& cC68(Y) ) ) ).
%----Equality cC72
fof(axiom_69,axiom,
! [X] :
( cC72(X)
<=> ( cC62xcomp(X)
& cC70(X) ) ) ).
%----Equality cC72
fof(axiom_70,axiom,
! [X] :
( cC72(X)
<=> ? [Y0] : ra_Px33(X,Y0) ) ).
%----Equality cC72xcomp
fof(axiom_71,axiom,
! [X] :
( cC72xcomp(X)
<=> ~ ? [Y] : ra_Px33(X,Y) ) ).
%----Equality cC74
fof(axiom_72,axiom,
! [X] :
( cC74(X)
<=> ? [Y] :
( rR1(X,Y)
& cC72(Y) ) ) ).
%----Equality cC74
fof(axiom_73,axiom,
! [X] :
( cC74(X)
<=> ? [Y0] : ra_Px18(X,Y0) ) ).
%----Equality cC74xcomp
fof(axiom_74,axiom,
! [X] :
( cC74xcomp(X)
<=> ~ ? [Y] : ra_Px18(X,Y) ) ).
%----Equality cC76
fof(axiom_75,axiom,
! [X] :
( cC76(X)
<=> ( cC74xcomp(X)
& cC56(X) ) ) ).
%----Equality cC78
fof(axiom_76,axiom,
! [X] :
( cC78(X)
<=> ? [Y] :
( rR1(X,Y)
& cC2xcomp(Y) ) ) ).
%----Equality cC78
fof(axiom_77,axiom,
! [X] :
( cC78(X)
<=> ? [Y0] : ra_Px20(X,Y0) ) ).
%----Equality cC78xcomp
fof(axiom_78,axiom,
! [X] :
( cC78xcomp(X)
<=> ~ ? [Y] : ra_Px20(X,Y) ) ).
%----Equality cC8
fof(axiom_79,axiom,
! [X] :
( cC8(X)
<=> ? [Y] :
( rR1(X,Y)
& cC6xcomp(Y) ) ) ).
%----Equality cC80
fof(axiom_80,axiom,
! [X] :
( cC80(X)
<=> ( cC78xcomp(X)
& cC2xcomp(X) ) ) ).
%----Equality cC82
fof(axiom_81,axiom,
! [X] :
( cC82(X)
<=> ~ ? [Y] : ra_Px25(X,Y) ) ).
%----Equality cC82
fof(axiom_82,axiom,
! [X] :
( cC82(X)
<=> ? [Y] :
( rR1(X,Y)
& cC80(Y) ) ) ).
%----Equality cC82xcomp
fof(axiom_83,axiom,
! [X] :
( cC82xcomp(X)
<=> ? [Y0] : ra_Px25(X,Y0) ) ).
%----Equality cC84
fof(axiom_84,axiom,
! [X] :
( cC84(X)
<=> ? [Y] :
( rR1(X,Y)
& cC2xcomp(Y) ) ) ).
%----Equality cC84
fof(axiom_85,axiom,
! [X] :
( cC84(X)
<=> ? [Y0] : ra_Px23(X,Y0) ) ).
%----Equality cC84xcomp
fof(axiom_86,axiom,
! [X] :
( cC84xcomp(X)
<=> ~ ? [Y] : ra_Px23(X,Y) ) ).
%----Equality cC86
fof(axiom_87,axiom,
! [X] :
( cC86(X)
<=> ( cC84xcomp(X)
& cC2xcomp(X) ) ) ).
%----Equality cC88
fof(axiom_88,axiom,
! [X] :
( cC88(X)
<=> ? [Y] :
( rR1(X,Y)
& cC86(Y) ) ) ).
%----Equality cC90
fof(axiom_89,axiom,
! [X] :
( cC90(X)
<=> ? [Y] :
( rR1(X,Y)
& cC88(Y) ) ) ).
%----Equality cC92
fof(axiom_90,axiom,
! [X] :
( cC92(X)
<=> ( cC82xcomp(X)
& cC90(X) ) ) ).
%----Equality cC92
fof(axiom_91,axiom,
! [X] :
( cC92(X)
<=> ~ ? [Y] : ra_Px34(X,Y) ) ).
%----Equality cC92xcomp
fof(axiom_92,axiom,
! [X] :
( cC92xcomp(X)
<=> ? [Y0] : ra_Px34(X,Y0) ) ).
%----Equality cC94
fof(axiom_93,axiom,
! [X] :
( cC94(X)
<=> ? [Y0] : ra_Px29(X,Y0) ) ).
%----Equality cC94
fof(axiom_94,axiom,
! [X] :
( cC94(X)
<=> ? [Y] :
( rR1(X,Y)
& cC92(Y) ) ) ).
%----Equality cC94xcomp
fof(axiom_95,axiom,
! [X] :
( cC94xcomp(X)
<=> ~ ? [Y] : ra_Px29(X,Y) ) ).
%----Equality cTEST
fof(axiom_96,axiom,
! [X] :
( cTEST(X)
<=> ( cC76(X)
& cC94xcomp(X) ) ) ).
%----iV8467
fof(axiom_97,axiom,
cC52xcomp(iV8467) ).
%----iV8467
fof(axiom_98,axiom,
cC72xcomp(iV8467) ).
%----iV8467
fof(axiom_99,axiom,
cC92xcomp(iV8467) ).
%----iV8467
fof(axiom_100,axiom,
cC42xcomp(iV8467) ).
%----iV8467
fof(axiom_101,axiom,
cC26xcomp(iV8467) ).
%----iV8467
fof(axiom_102,axiom,
cowlThing(iV8467) ).
fof(axiom_103,axiom,
rR1(iV8467,iV8471) ).
fof(axiom_104,axiom,
rR1(iV8467,iV8470) ).
fof(axiom_105,axiom,
rR1(iV8467,iV8469) ).
fof(axiom_106,axiom,
rR1(iV8467,iV8474) ).
fof(axiom_107,axiom,
rR1(iV8467,iV8468) ).
fof(axiom_108,axiom,
rR1(iV8467,iV8473) ).
fof(axiom_109,axiom,
rR1(iV8467,iV8475) ).
fof(axiom_110,axiom,
rR1(iV8467,iV8472) ).
%----iV8468
fof(axiom_111,axiom,
cC2xcomp(iV8468) ).
%----iV8468
fof(axiom_112,axiom,
cowlThing(iV8468) ).
%----iV8469
fof(axiom_113,axiom,
cC6xcomp(iV8469) ).
%----iV8469
fof(axiom_114,axiom,
cowlThing(iV8469) ).
%----iV8469
fof(axiom_115,axiom,
! [X] :
( rR1(iV8469,X)
=> cC2(X) ) ).
%----iV8470
fof(axiom_116,axiom,
cTOP(iV8470) ).
%----iV8470
fof(axiom_117,axiom,
cowlThing(iV8470) ).
%----iV8471
fof(axiom_118,axiom,
cC78xcomp(iV8471) ).
%----iV8471
fof(axiom_119,axiom,
cC2xcomp(iV8471) ).
%----iV8471
fof(axiom_120,axiom,
cowlThing(iV8471) ).
%----iV8471
fof(axiom_121,axiom,
! [X] :
( rR1(iV8471,X)
=> cC2(X) ) ).
%----iV8472
fof(axiom_122,axiom,
cC2xcomp(iV8472) ).
%----iV8472
fof(axiom_123,axiom,
cowlThing(iV8472) ).
fof(axiom_124,axiom,
rR1(iV8472,iV8476) ).
%----iV8473
fof(axiom_125,axiom,
cC2xcomp(iV8473) ).
%----iV8473
fof(axiom_126,axiom,
cowlThing(iV8473) ).
%----iV8474
fof(axiom_127,axiom,
cC32xcomp(iV8474) ).
%----iV8474
fof(axiom_128,axiom,
cowlThing(iV8474) ).
%----iV8474
fof(axiom_129,axiom,
! [X] :
( rR1(iV8474,X)
=> cC2xcomp(X) ) ).
%----iV8475
fof(axiom_130,axiom,
cC2xcomp(iV8475) ).
%----iV8475
fof(axiom_131,axiom,
cowlThing(iV8475) ).
%----iV8476
fof(axiom_132,axiom,
cC2(iV8476) ).
%----iV8476
fof(axiom_133,axiom,
cowlThing(iV8476) ).
%----Thing and Nothing
%----String and Integer disjoint
%----iV8467
%----iV8467
%----iV8467
%----iV8467
%----iV8467
%----iV8467
%----iV8467
%----iV8467
%----iV8467
%----iV8467
%----iV8471
%----iV8471
%----iV8472
%----iV8472
%----iV8472
fof(the_axiom,conjecture,
( ! [X] :
( cowlThing(X)
& ~ cowlNothing(X) )
& ! [X] :
( xsd_string(X)
<=> ~ xsd_integer(X) )
& cC20(iV8467)
& cC4(iV8467)
& cC8(iV8467)
& cC82(iV8467)
& cC62(iV8467)
& cC14(iV8467)
& cC34(iV8467)
& cC10(iV8467)
& cowlThing(iV8467)
& cC48(iV8467)
& cowlThing(iV8471)
& cC80(iV8471)
& cC58(iV8472)
& cC60(iV8472)
& cowlThing(iV8472) ) ).
%------------------------------------------------------------------------------