TPTP Problem File: KRS148+1.p
View Solutions
- Solve Problem
%------------------------------------------------------------------------------
% File : KRS148+1 : TPTP v9.0.0. Released v3.1.0.
% Domain : Knowledge Representation (Semantic Web)
% Problem : DL Test: k_dum ABox test from DL98 systems comparison
% Version : Especial.
% English :
% Refs : [Bec03] Bechhofer (2003), Email to G. Sutcliffe
% : [TR+04] Tsarkov et al. (2004), Using Vampire to Reason with OW
% Source : [Bec03]
% Names : positive_description-logic-Manifest203 [Bec03]
% Status : Theorem
% Rating : 0.00 v6.1.0, 0.12 v6.0.0, 0.50 v5.5.0, 0.12 v5.4.0, 0.17 v5.3.0, 0.22 v5.2.0, 0.07 v5.0.0, 0.10 v4.1.0, 0.06 v4.0.1, 0.00 v3.7.0, 0.33 v3.5.0, 0.12 v3.4.0, 0.17 v3.3.0, 0.00 v3.2.0, 0.11 v3.1.0
% Syntax : Number of formulae : 90 ( 13 unt; 0 def)
% Number of atoms : 243 ( 0 equ)
% Maximal formula atoms : 8 ( 2 avg)
% Number of connectives : 207 ( 54 ~; 0 |; 77 &)
% ( 72 <=>; 4 =>; 0 <=; 0 <~>)
% Maximal formula depth : 6 ( 4 avg)
% Maximal term depth : 1 ( 1 avg)
% Number of predicates : 77 ( 77 usr; 0 prp; 1-2 aty)
% Number of functors : 3 ( 3 usr; 3 con; 0-0 aty)
% Number of variables : 116 ( 78 !; 38 ?)
% SPC : FOF_THM_RFO_NEQ
% Comments : Sean Bechhofer says there are some errors in the encoding of
% datatypes, so this problem may not be perfect. At least it's
% still representative of the type of reasoning required for OWL.
%------------------------------------------------------------------------------
%----Thing and Nothing
fof(axiom_0,axiom,
! [X] :
( cowlThing(X)
& ~ cowlNothing(X) ) ).
%----String and Integer disjoint
fof(axiom_1,axiom,
! [X] :
( xsd_string(X)
<=> ~ xsd_integer(X) ) ).
%----Equality cC10
fof(axiom_2,axiom,
! [X] :
( cC10(X)
<=> ( ~ cC8(X)
& ~ cC2(X) ) ) ).
%----Equality cC100
fof(axiom_3,axiom,
! [X] :
( cC100(X)
<=> ( ~ cC98(X)
& cC94(X) ) ) ).
%----Equality cC102
fof(axiom_4,axiom,
! [X] :
( cC102(X)
<=> ? [Y] :
( rR1(X,Y)
& cC100(Y) ) ) ).
%----Equality cC104
fof(axiom_5,axiom,
! [X] :
( cC104(X)
<=> ( ~ cC102(X)
& cC88(X) ) ) ).
%----Equality cC106
fof(axiom_6,axiom,
! [X] :
( cC106(X)
<=> ? [Y] :
( rR1(X,Y)
& cC104(Y) ) ) ).
%----Equality cC108
fof(axiom_7,axiom,
! [X] :
( cC108(X)
<=> ( cC84(X)
& ~ cC106(X) ) ) ).
%----Equality cC110
fof(axiom_8,axiom,
! [X] :
( cC110(X)
<=> ( cC62(X)
& ~ cC108(X) ) ) ).
%----Equality cC112
fof(axiom_9,axiom,
! [X] :
( cC112(X)
<=> ? [Y] :
( rR1(X,Y)
& ~ cC110(Y) ) ) ).
%----Equality cC114
fof(axiom_10,axiom,
! [X] :
( cC114(X)
<=> ? [Y] :
( rR1(X,Y)
& cC112(Y) ) ) ).
%----Equality cC116
fof(axiom_11,axiom,
! [X] :
( cC116(X)
<=> ( cTOP(X)
& ~ cC114(X) ) ) ).
%----Equality cC118
fof(axiom_12,axiom,
! [X] :
( cC118(X)
<=> ? [Y] :
( rR1(X,Y)
& ~ cC2(Y) ) ) ).
%----Equality cC12
fof(axiom_13,axiom,
! [X] :
( cC12(X)
<=> ? [Y] :
( rR1(X,Y)
& cC10(Y) ) ) ).
%----Equality cC120
fof(axiom_14,axiom,
! [X] :
( cC120(X)
<=> ? [Y] :
( rR1(X,Y)
& ~ cC118(Y) ) ) ).
%----Equality cC122
fof(axiom_15,axiom,
! [X] :
( cC122(X)
<=> ( ~ cC2(X)
& cC120(X) ) ) ).
%----Equality cC124
fof(axiom_16,axiom,
! [X] :
( cC124(X)
<=> ? [Y] :
( rR1(X,Y)
& ~ cC2(Y) ) ) ).
%----Equality cC126
fof(axiom_17,axiom,
! [X] :
( cC126(X)
<=> ( cC124(X)
& cC2(X) ) ) ).
%----Equality cC128
fof(axiom_18,axiom,
! [X] :
( cC128(X)
<=> ? [Y] :
( rR1(X,Y)
& cC126(Y) ) ) ).
%----Equality cC130
fof(axiom_19,axiom,
! [X] :
( cC130(X)
<=> ( ~ cC2(X)
& ~ cC128(X) ) ) ).
%----Equality cC132
fof(axiom_20,axiom,
! [X] :
( cC132(X)
<=> ? [Y] :
( rR1(X,Y)
& cC130(Y) ) ) ).
%----Equality cC134
fof(axiom_21,axiom,
! [X] :
( cC134(X)
<=> ( cC122(X)
& ~ cC132(X) ) ) ).
%----Equality cC136
fof(axiom_22,axiom,
! [X] :
( cC136(X)
<=> ? [Y] :
( rR1(X,Y)
& cC134(Y) ) ) ).
%----Equality cC138
fof(axiom_23,axiom,
! [X] :
( cC138(X)
<=> ? [Y] :
( rR1(X,Y)
& cC136(Y) ) ) ).
%----Equality cC14
fof(axiom_24,axiom,
! [X] :
( cC14(X)
<=> ? [Y] :
( rR1(X,Y)
& cC12(Y) ) ) ).
%----Equality cC140
fof(axiom_25,axiom,
! [X] :
( cC140(X)
<=> ( cTOP(X)
& cC138(X) ) ) ).
%----Equality cC16
fof(axiom_26,axiom,
! [X] :
( cC16(X)
<=> ? [Y] :
( rR1(X,Y)
& ~ cC2(Y) ) ) ).
%----Equality cC18
fof(axiom_27,axiom,
! [X] :
( cC18(X)
<=> ( cC16(X)
& cC2(X) ) ) ).
%----Equality cC20
fof(axiom_28,axiom,
! [X] :
( cC20(X)
<=> ? [Y] :
( rR1(X,Y)
& cC18(Y) ) ) ).
%----Equality cC22
fof(axiom_29,axiom,
! [X] :
( cC22(X)
<=> ( ~ cC20(X)
& ~ cC2(X) ) ) ).
%----Equality cC24
fof(axiom_30,axiom,
! [X] :
( cC24(X)
<=> ? [Y] :
( rR1(X,Y)
& cC22(Y) ) ) ).
%----Equality cC26
fof(axiom_31,axiom,
! [X] :
( cC26(X)
<=> ( cC14(X)
& ~ cC24(X) ) ) ).
%----Equality cC28
fof(axiom_32,axiom,
! [X] :
( cC28(X)
<=> ? [Y] :
( rR1(X,Y)
& ~ cC2(Y) ) ) ).
%----Equality cC30
fof(axiom_33,axiom,
! [X] :
( cC30(X)
<=> ? [Y] :
( rR1(X,Y)
& cC28(Y) ) ) ).
%----Equality cC32
fof(axiom_34,axiom,
! [X] :
( cC32(X)
<=> ? [Y] :
( rR1(X,Y)
& ~ cC2(Y) ) ) ).
%----Equality cC34
fof(axiom_35,axiom,
! [X] :
( cC34(X)
<=> ( cC30(X)
& ~ cC32(X) ) ) ).
%----Equality cC36
fof(axiom_36,axiom,
! [X] :
( cC36(X)
<=> ? [Y] :
( rR1(X,Y)
& cC34(Y) ) ) ).
%----Equality cC38
fof(axiom_37,axiom,
! [X] :
( cC38(X)
<=> ( ~ cC36(X)
& ~ cC26(X) ) ) ).
%----Equality cC4
fof(axiom_38,axiom,
! [X] :
( cC4(X)
<=> ? [Y] :
( rR1(X,Y)
& ~ cC2(Y) ) ) ).
%----Equality cC40
fof(axiom_39,axiom,
! [X] :
( cC40(X)
<=> ? [Y] :
( rR1(X,Y)
& ~ cC2(Y) ) ) ).
%----Equality cC42
fof(axiom_40,axiom,
! [X] :
( cC42(X)
<=> ( ~ cC2(X)
& cC40(X) ) ) ).
%----Equality cC44
fof(axiom_41,axiom,
! [X] :
( cC44(X)
<=> ? [Y] :
( rR1(X,Y)
& ~ cC2(Y) ) ) ).
%----Equality cC46
fof(axiom_42,axiom,
! [X] :
( cC46(X)
<=> ? [Y] :
( rR1(X,Y)
& ~ cC44(Y) ) ) ).
%----Equality cC48
fof(axiom_43,axiom,
! [X] :
( cC48(X)
<=> ( cC42(X)
& cC46(X) ) ) ).
%----Equality cC50
fof(axiom_44,axiom,
! [X] :
( cC50(X)
<=> ? [Y] :
( rR1(X,Y)
& ~ cC2(Y) ) ) ).
%----Equality cC52
fof(axiom_45,axiom,
! [X] :
( cC52(X)
<=> ( cC2(X)
& cC50(X) ) ) ).
%----Equality cC54
fof(axiom_46,axiom,
! [X] :
( cC54(X)
<=> ? [Y] :
( rR1(X,Y)
& cC52(Y) ) ) ).
%----Equality cC56
fof(axiom_47,axiom,
! [X] :
( cC56(X)
<=> ( ~ cC54(X)
& ~ cC2(X) ) ) ).
%----Equality cC58
fof(axiom_48,axiom,
! [X] :
( cC58(X)
<=> ? [Y] :
( rR1(X,Y)
& cC56(Y) ) ) ).
%----Equality cC6
fof(axiom_49,axiom,
! [X] :
( cC6(X)
<=> ( cC2(X)
& cC4(X) ) ) ).
%----Equality cC60
fof(axiom_50,axiom,
! [X] :
( cC60(X)
<=> ( cC48(X)
& ~ cC58(X) ) ) ).
%----Equality cC62
fof(axiom_51,axiom,
! [X] :
( cC62(X)
<=> ( cC38(X)
& ~ cC60(X) ) ) ).
%----Equality cC64
fof(axiom_52,axiom,
! [X] :
( cC64(X)
<=> ? [Y] :
( rR1(X,Y)
& ~ cC2(Y) ) ) ).
%----Equality cC66
fof(axiom_53,axiom,
! [X] :
( cC66(X)
<=> ( cC64(X)
& cC2(X) ) ) ).
%----Equality cC68
fof(axiom_54,axiom,
! [X] :
( cC68(X)
<=> ? [Y] :
( rR1(X,Y)
& ~ cC2(Y) ) ) ).
%----Equality cC70
fof(axiom_55,axiom,
! [X] :
( cC70(X)
<=> ( cC2(X)
& cC68(X) ) ) ).
%----Equality cC72
fof(axiom_56,axiom,
! [X] :
( cC72(X)
<=> ? [Y] :
( rR1(X,Y)
& cC70(Y) ) ) ).
%----Equality cC74
fof(axiom_57,axiom,
! [X] :
( cC74(X)
<=> ( cC66(X)
& cC72(X) ) ) ).
%----Equality cC76
fof(axiom_58,axiom,
! [X] :
( cC76(X)
<=> ? [Y] :
( rR1(X,Y)
& ~ cC2(Y) ) ) ).
%----Equality cC78
fof(axiom_59,axiom,
! [X] :
( cC78(X)
<=> ( cC76(X)
& cC2(X) ) ) ).
%----Equality cC8
fof(axiom_60,axiom,
! [X] :
( cC8(X)
<=> ? [Y] :
( rR1(X,Y)
& cC6(Y) ) ) ).
%----Equality cC80
fof(axiom_61,axiom,
! [X] :
( cC80(X)
<=> ? [Y] :
( rR1(X,Y)
& cC78(Y) ) ) ).
%----Equality cC82
fof(axiom_62,axiom,
! [X] :
( cC82(X)
<=> ? [Y] :
( rR1(X,Y)
& ~ cC80(Y) ) ) ).
%----Equality cC84
fof(axiom_63,axiom,
! [X] :
( cC84(X)
<=> ( cC82(X)
& cC74(X) ) ) ).
%----Equality cC86
fof(axiom_64,axiom,
! [X] :
( cC86(X)
<=> ? [Y] :
( rR1(X,Y)
& ~ cC2(Y) ) ) ).
%----Equality cC88
fof(axiom_65,axiom,
! [X] :
( cC88(X)
<=> ( cC86(X)
& cC2(X) ) ) ).
%----Equality cC90
fof(axiom_66,axiom,
! [X] :
( cC90(X)
<=> ? [Y] :
( rR1(X,Y)
& ~ cC2(Y) ) ) ).
%----Equality cC92
fof(axiom_67,axiom,
! [X] :
( cC92(X)
<=> ( cC2(X)
& cC90(X) ) ) ).
%----Equality cC94
fof(axiom_68,axiom,
! [X] :
( cC94(X)
<=> ? [Y] :
( rR1(X,Y)
& cC92(Y) ) ) ).
%----Equality cC96
fof(axiom_69,axiom,
! [X] :
( cC96(X)
<=> ? [Y] :
( rR1(X,Y)
& ~ cC2(Y) ) ) ).
%----Equality cC98
fof(axiom_70,axiom,
! [X] :
( cC98(X)
<=> ( cC96(X)
& cC2(X) ) ) ).
%----Equality cTEST
fof(axiom_71,axiom,
! [X] :
( cTEST(X)
<=> ( cC140(X)
& cC116(X) ) ) ).
%----iV5475
fof(axiom_72,axiom,
cTEST(iV5475) ).
%----iV5475
fof(axiom_73,axiom,
cTOP(iV5475) ).
%----iV5475
fof(axiom_74,axiom,
cowlThing(iV5475) ).
%----iV5475
fof(axiom_75,axiom,
! [X] :
( rR1(iV5475,X)
=> ~ cC112(X) ) ).
%----iV5475
fof(axiom_76,axiom,
~ cC114(iV5475) ).
fof(axiom_77,axiom,
rR1(iV5475,iV5476) ).
%----iV5476
fof(axiom_78,axiom,
cowlThing(iV5476) ).
%----iV5478
fof(axiom_79,axiom,
~ cC34(iV5478) ).
%----iV5478
fof(axiom_80,axiom,
~ cC12(iV5478) ).
%----iV5478
fof(axiom_81,axiom,
! [X] :
( rR1(iV5478,X)
=> cC2(X) ) ).
%----iV5478
fof(axiom_82,axiom,
~ cC30(iV5478) ).
%----iV5478
fof(axiom_83,axiom,
~ cC130(iV5478) ).
%----iV5478
fof(axiom_84,axiom,
~ cC118(iV5478) ).
%----iV5478
fof(axiom_85,axiom,
cowlThing(iV5478) ).
%----iV5478
fof(axiom_86,axiom,
cC2(iV5478) ).
%----iV5478
fof(axiom_87,axiom,
! [X] :
( rR1(iV5478,X)
=> ~ cC28(X) ) ).
%----iV5478
fof(axiom_88,axiom,
! [X] :
( rR1(iV5478,X)
=> ~ cC10(X) ) ).
%----Thing and Nothing
%----String and Integer disjoint
%----iV5475
%----iV5475
%----iV5475
%----iV5475
fof(the_axiom,conjecture,
( ! [X] :
( cowlThing(X)
& ~ cowlNothing(X) )
& ! [X] :
( xsd_string(X)
<=> ~ xsd_integer(X) )
& cC138(iV5475)
& cowlThing(iV5475)
& cC116(iV5475)
& cC140(iV5475) ) ).
%------------------------------------------------------------------------------